Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157243168> ?p ?o ?g. }
- W3157243168 endingPage "7069" @default.
- W3157243168 startingPage "7056" @default.
- W3157243168 abstract "<abstract> This paper proposes a simple, accurate and effective empirical formula to determine the number of supporting nodes in a newly-developed method, the localized method of fundamental solutions (LMFS). The LMFS has the merits of meshless, high-accuracy and easy-to-simulation in large-scale problems, but the number of supporting nodes has a certain impact on the accuracy and stability of the scheme. By using the curve fitting technique, this study established a simple formula between the number of supporting nodes and the node spacing. Based on the developed formula, the reasonable number of supporting nodes can be determined according to the node spacing. Numerical experiments confirmed the validity of the proposed methodology. This paper perfected the theory of the LMFS, and provided a quantitative selection strategy of method parameters. </abstract>" @default.
- W3157243168 created "2021-05-10" @default.
- W3157243168 creator A5001128945 @default.
- W3157243168 creator A5077997004 @default.
- W3157243168 date "2021-01-01" @default.
- W3157243168 modified "2023-10-02" @default.
- W3157243168 title "On the supporting nodes in the localized method of fundamental solutions for 2D potential problems with Dirichlet boundary condition" @default.
- W3157243168 cites W2002537871 @default.
- W3157243168 cites W2006231184 @default.
- W3157243168 cites W2054304632 @default.
- W3157243168 cites W2068044232 @default.
- W3157243168 cites W2079556882 @default.
- W3157243168 cites W2084398830 @default.
- W3157243168 cites W2101121254 @default.
- W3157243168 cites W2112374521 @default.
- W3157243168 cites W2149553063 @default.
- W3157243168 cites W2835286604 @default.
- W3157243168 cites W2890399461 @default.
- W3157243168 cites W2913680347 @default.
- W3157243168 cites W2914134051 @default.
- W3157243168 cites W2944469378 @default.
- W3157243168 cites W2944780922 @default.
- W3157243168 cites W2948878137 @default.
- W3157243168 cites W2951996532 @default.
- W3157243168 cites W2959720391 @default.
- W3157243168 cites W2960179298 @default.
- W3157243168 cites W2968370549 @default.
- W3157243168 cites W2988039216 @default.
- W3157243168 cites W2989232712 @default.
- W3157243168 cites W2990677519 @default.
- W3157243168 cites W3009942189 @default.
- W3157243168 cites W3011137599 @default.
- W3157243168 cites W3012147824 @default.
- W3157243168 cites W3016083650 @default.
- W3157243168 cites W3017228779 @default.
- W3157243168 cites W3034053595 @default.
- W3157243168 cites W3035536381 @default.
- W3157243168 cites W3043297906 @default.
- W3157243168 cites W3045324338 @default.
- W3157243168 cites W3046109909 @default.
- W3157243168 cites W3086624198 @default.
- W3157243168 cites W3088798054 @default.
- W3157243168 cites W3106998997 @default.
- W3157243168 cites W3108095782 @default.
- W3157243168 cites W3118891601 @default.
- W3157243168 cites W3119652027 @default.
- W3157243168 cites W3120064161 @default.
- W3157243168 cites W3120529452 @default.
- W3157243168 cites W3122280449 @default.
- W3157243168 cites W3128107498 @default.
- W3157243168 cites W3132561173 @default.
- W3157243168 cites W3133350504 @default.
- W3157243168 cites W3148487644 @default.
- W3157243168 doi "https://doi.org/10.3934/math.2021414" @default.
- W3157243168 hasPublicationYear "2021" @default.
- W3157243168 type Work @default.
- W3157243168 sameAs 3157243168 @default.
- W3157243168 citedByCount "1" @default.
- W3157243168 countsByYear W31572431682023 @default.
- W3157243168 crossrefType "journal-article" @default.
- W3157243168 hasAuthorship W3157243168A5001128945 @default.
- W3157243168 hasAuthorship W3157243168A5077997004 @default.
- W3157243168 hasBestOaLocation W31572431681 @default.
- W3157243168 hasConcept C110167270 @default.
- W3157243168 hasConcept C111472728 @default.
- W3157243168 hasConcept C112972136 @default.
- W3157243168 hasConcept C11413529 @default.
- W3157243168 hasConcept C119857082 @default.
- W3157243168 hasConcept C121332964 @default.
- W3157243168 hasConcept C126255220 @default.
- W3157243168 hasConcept C127413603 @default.
- W3157243168 hasConcept C134306372 @default.
- W3157243168 hasConcept C138885662 @default.
- W3157243168 hasConcept C154945302 @default.
- W3157243168 hasConcept C169214877 @default.
- W3157243168 hasConcept C182310444 @default.
- W3157243168 hasConcept C2778755073 @default.
- W3157243168 hasConcept C2780586882 @default.
- W3157243168 hasConcept C28826006 @default.
- W3157243168 hasConcept C33923547 @default.
- W3157243168 hasConcept C41008148 @default.
- W3157243168 hasConcept C62354387 @default.
- W3157243168 hasConcept C62520636 @default.
- W3157243168 hasConcept C62611344 @default.
- W3157243168 hasConcept C66938386 @default.
- W3157243168 hasConcept C77618280 @default.
- W3157243168 hasConcept C81917197 @default.
- W3157243168 hasConceptScore W3157243168C110167270 @default.
- W3157243168 hasConceptScore W3157243168C111472728 @default.
- W3157243168 hasConceptScore W3157243168C112972136 @default.
- W3157243168 hasConceptScore W3157243168C11413529 @default.
- W3157243168 hasConceptScore W3157243168C119857082 @default.
- W3157243168 hasConceptScore W3157243168C121332964 @default.
- W3157243168 hasConceptScore W3157243168C126255220 @default.
- W3157243168 hasConceptScore W3157243168C127413603 @default.
- W3157243168 hasConceptScore W3157243168C134306372 @default.
- W3157243168 hasConceptScore W3157243168C138885662 @default.
- W3157243168 hasConceptScore W3157243168C154945302 @default.