Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157243312> ?p ?o ?g. }
- W3157243312 endingPage "48" @default.
- W3157243312 startingPage "33" @default.
- W3157243312 abstract "Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks).To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included.It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses." @default.
- W3157243312 created "2021-05-10" @default.
- W3157243312 creator A5005120124 @default.
- W3157243312 creator A5014350207 @default.
- W3157243312 creator A5024249011 @default.
- W3157243312 date "2022-01-01" @default.
- W3157243312 modified "2023-10-18" @default.
- W3157243312 title "A review on modern defect detection models using DCNNs – Deep convolutional neural networks" @default.
- W3157243312 cites W1536680647 @default.
- W3157243312 cites W1976779966 @default.
- W3157243312 cites W2004313226 @default.
- W3157243312 cites W2021609979 @default.
- W3157243312 cites W2033219646 @default.
- W3157243312 cites W2050170630 @default.
- W3157243312 cites W2065410047 @default.
- W3157243312 cites W2067530554 @default.
- W3157243312 cites W2082484042 @default.
- W3157243312 cites W2102605133 @default.
- W3157243312 cites W2104095591 @default.
- W3157243312 cites W2109255472 @default.
- W3157243312 cites W2120587770 @default.
- W3157243312 cites W2194775991 @default.
- W3157243312 cites W2570343428 @default.
- W3157243312 cites W2618530766 @default.
- W3157243312 cites W2772386856 @default.
- W3157243312 cites W2794284562 @default.
- W3157243312 cites W2806070179 @default.
- W3157243312 cites W2897689496 @default.
- W3157243312 cites W2897772777 @default.
- W3157243312 cites W2910668204 @default.
- W3157243312 cites W2922220370 @default.
- W3157243312 cites W2954982419 @default.
- W3157243312 cites W2963163009 @default.
- W3157243312 cites W2963253967 @default.
- W3157243312 cites W2963446712 @default.
- W3157243312 cites W2965602659 @default.
- W3157243312 cites W2972309292 @default.
- W3157243312 cites W2982083293 @default.
- W3157243312 cites W2987175876 @default.
- W3157243312 cites W2998228095 @default.
- W3157243312 cites W3015187397 @default.
- W3157243312 cites W3022851742 @default.
- W3157243312 cites W3034971973 @default.
- W3157243312 cites W3042011474 @default.
- W3157243312 cites W3086841682 @default.
- W3157243312 cites W3088490277 @default.
- W3157243312 cites W3106250896 @default.
- W3157243312 cites W639708223 @default.
- W3157243312 doi "https://doi.org/10.1016/j.jare.2021.03.015" @default.
- W3157243312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35024194" @default.
- W3157243312 hasPublicationYear "2022" @default.
- W3157243312 type Work @default.
- W3157243312 sameAs 3157243312 @default.
- W3157243312 citedByCount "80" @default.
- W3157243312 countsByYear W31572433122021 @default.
- W3157243312 countsByYear W31572433122022 @default.
- W3157243312 countsByYear W31572433122023 @default.
- W3157243312 crossrefType "journal-article" @default.
- W3157243312 hasAuthorship W3157243312A5005120124 @default.
- W3157243312 hasAuthorship W3157243312A5014350207 @default.
- W3157243312 hasAuthorship W3157243312A5024249011 @default.
- W3157243312 hasBestOaLocation W31572433121 @default.
- W3157243312 hasConcept C108583219 @default.
- W3157243312 hasConcept C113775141 @default.
- W3157243312 hasConcept C119857082 @default.
- W3157243312 hasConcept C144133560 @default.
- W3157243312 hasConcept C153180895 @default.
- W3157243312 hasConcept C154945302 @default.
- W3157243312 hasConcept C162853370 @default.
- W3157243312 hasConcept C199360897 @default.
- W3157243312 hasConcept C2776151529 @default.
- W3157243312 hasConcept C41008148 @default.
- W3157243312 hasConcept C63000827 @default.
- W3157243312 hasConcept C81363708 @default.
- W3157243312 hasConcept C86251818 @default.
- W3157243312 hasConceptScore W3157243312C108583219 @default.
- W3157243312 hasConceptScore W3157243312C113775141 @default.
- W3157243312 hasConceptScore W3157243312C119857082 @default.
- W3157243312 hasConceptScore W3157243312C144133560 @default.
- W3157243312 hasConceptScore W3157243312C153180895 @default.
- W3157243312 hasConceptScore W3157243312C154945302 @default.
- W3157243312 hasConceptScore W3157243312C162853370 @default.
- W3157243312 hasConceptScore W3157243312C199360897 @default.
- W3157243312 hasConceptScore W3157243312C2776151529 @default.
- W3157243312 hasConceptScore W3157243312C41008148 @default.
- W3157243312 hasConceptScore W3157243312C63000827 @default.
- W3157243312 hasConceptScore W3157243312C81363708 @default.
- W3157243312 hasConceptScore W3157243312C86251818 @default.
- W3157243312 hasFunder F4320323983 @default.
- W3157243312 hasLocation W31572433121 @default.
- W3157243312 hasLocation W31572433122 @default.
- W3157243312 hasLocation W31572433123 @default.
- W3157243312 hasLocation W31572433124 @default.
- W3157243312 hasOpenAccess W3157243312 @default.
- W3157243312 hasPrimaryLocation W31572433121 @default.
- W3157243312 hasRelatedWork W1490753184 @default.
- W3157243312 hasRelatedWork W2016659453 @default.
- W3157243312 hasRelatedWork W2284465472 @default.