Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157243325> ?p ?o ?g. }
- W3157243325 endingPage "830" @default.
- W3157243325 startingPage "819" @default.
- W3157243325 abstract "Machine-learning techniques are suitably employed for gait-event prediction from only surface electromyographic (sEMG) signals in control subjects during walking. Nevertheless, a reference approach is not available in cerebral-palsy hemiplegic children, likely due to the large variability of foot-floor contacts. This study is designed to investigate a machine-learning-based approach, specifically developed to binary classify gait events and to predict heel-strike (HS) and toe-off (TO) timing from sEMG signals in hemiplegic-child walking. To this objective, sEMG signals are acquired from five hemiplegic-leg muscles in nearly 2500 strides from 20 hemiplegic children, acknowledged as Winters’ group 1 and 2. sEMG signals, segmented in overlapping windows of 600 samples (pace = 5 samples), are used to train a multi-layer perceptron model. Intra-subject and inter-subject experimental settings are tested. The best-performing intra-subject approach is able to provide in the hemiplegic population a mean classification accuracy (±SD) of 0.97±0.01 and a suitable prediction of HS and TO events, in terms of average mean absolute error (MAE, 14.8±3.2 ms for HS and 17.6±4.2 ms for TO) and F1-score (0.95±0.03 for HS and 0.92±0.07 for TO). These results outperform previous sEMG-based attempts in cerebral-palsy populations and are comparable with outcomes achieved by reference approaches in control populations. In conclusion, the findings of the study prove the feasibility of neural networks in predicting the two main gait events using surface EMG signals, also in condition of high variability of the signal to predict as in hemiplegic cerebral palsy." @default.
- W3157243325 created "2021-05-10" @default.
- W3157243325 creator A5016251992 @default.
- W3157243325 creator A5039811734 @default.
- W3157243325 creator A5064947412 @default.
- W3157243325 creator A5071959554 @default.
- W3157243325 creator A5074775900 @default.
- W3157243325 creator A5078474054 @default.
- W3157243325 date "2021-01-01" @default.
- W3157243325 modified "2023-10-14" @default.
- W3157243325 title "Machine-Learning-Based Prediction of Gait Events From EMG in Cerebral Palsy Children" @default.
- W3157243325 cites W1549252861 @default.
- W3157243325 cites W1582698249 @default.
- W3157243325 cites W1968947773 @default.
- W3157243325 cites W1979951218 @default.
- W3157243325 cites W1982951579 @default.
- W3157243325 cites W1989324306 @default.
- W3157243325 cites W2000577618 @default.
- W3157243325 cites W2009026445 @default.
- W3157243325 cites W2018488577 @default.
- W3157243325 cites W2030254544 @default.
- W3157243325 cites W2049932614 @default.
- W3157243325 cites W2066825169 @default.
- W3157243325 cites W2099279272 @default.
- W3157243325 cites W2142537699 @default.
- W3157243325 cites W2157602065 @default.
- W3157243325 cites W2159740974 @default.
- W3157243325 cites W2160060605 @default.
- W3157243325 cites W2161516402 @default.
- W3157243325 cites W2166631106 @default.
- W3157243325 cites W2222399534 @default.
- W3157243325 cites W2526225066 @default.
- W3157243325 cites W2796174960 @default.
- W3157243325 cites W2888531427 @default.
- W3157243325 cites W2897801305 @default.
- W3157243325 cites W2902379278 @default.
- W3157243325 cites W2914235056 @default.
- W3157243325 cites W2947811356 @default.
- W3157243325 cites W2947998142 @default.
- W3157243325 cites W2956049713 @default.
- W3157243325 cites W2968271573 @default.
- W3157243325 cites W2986257949 @default.
- W3157243325 cites W3045673218 @default.
- W3157243325 cites W4238211574 @default.
- W3157243325 doi "https://doi.org/10.1109/tnsre.2021.3076366" @default.
- W3157243325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33909568" @default.
- W3157243325 hasPublicationYear "2021" @default.
- W3157243325 type Work @default.
- W3157243325 sameAs 3157243325 @default.
- W3157243325 citedByCount "15" @default.
- W3157243325 countsByYear W31572433252022 @default.
- W3157243325 countsByYear W31572433252023 @default.
- W3157243325 crossrefType "journal-article" @default.
- W3157243325 hasAuthorship W3157243325A5016251992 @default.
- W3157243325 hasAuthorship W3157243325A5039811734 @default.
- W3157243325 hasAuthorship W3157243325A5064947412 @default.
- W3157243325 hasAuthorship W3157243325A5071959554 @default.
- W3157243325 hasAuthorship W3157243325A5074775900 @default.
- W3157243325 hasAuthorship W3157243325A5078474054 @default.
- W3157243325 hasBestOaLocation W31572433251 @default.
- W3157243325 hasConcept C119857082 @default.
- W3157243325 hasConcept C151800584 @default.
- W3157243325 hasConcept C154945302 @default.
- W3157243325 hasConcept C179717631 @default.
- W3157243325 hasConcept C2779421357 @default.
- W3157243325 hasConcept C2908647359 @default.
- W3157243325 hasConcept C41008148 @default.
- W3157243325 hasConcept C50644808 @default.
- W3157243325 hasConcept C71924100 @default.
- W3157243325 hasConcept C99454951 @default.
- W3157243325 hasConcept C99508421 @default.
- W3157243325 hasConceptScore W3157243325C119857082 @default.
- W3157243325 hasConceptScore W3157243325C151800584 @default.
- W3157243325 hasConceptScore W3157243325C154945302 @default.
- W3157243325 hasConceptScore W3157243325C179717631 @default.
- W3157243325 hasConceptScore W3157243325C2779421357 @default.
- W3157243325 hasConceptScore W3157243325C2908647359 @default.
- W3157243325 hasConceptScore W3157243325C41008148 @default.
- W3157243325 hasConceptScore W3157243325C50644808 @default.
- W3157243325 hasConceptScore W3157243325C71924100 @default.
- W3157243325 hasConceptScore W3157243325C99454951 @default.
- W3157243325 hasConceptScore W3157243325C99508421 @default.
- W3157243325 hasLocation W31572433251 @default.
- W3157243325 hasOpenAccess W3157243325 @default.
- W3157243325 hasPrimaryLocation W31572433251 @default.
- W3157243325 hasRelatedWork W2020718454 @default.
- W3157243325 hasRelatedWork W2032579722 @default.
- W3157243325 hasRelatedWork W2135219057 @default.
- W3157243325 hasRelatedWork W2301552848 @default.
- W3157243325 hasRelatedWork W2757534034 @default.
- W3157243325 hasRelatedWork W2980278003 @default.
- W3157243325 hasRelatedWork W3028179598 @default.
- W3157243325 hasRelatedWork W4231958903 @default.
- W3157243325 hasRelatedWork W4307331201 @default.
- W3157243325 hasRelatedWork W634966806 @default.
- W3157243325 hasVolume "29" @default.
- W3157243325 isParatext "false" @default.
- W3157243325 isRetracted "false" @default.