Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157291221> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3157291221 abstract "Malware is dangerous for system and network users. Malware identification is an essential task in effectively detecting and preventing the computer system from self-infection, protecting it from potential data loss and system compromise. Commonly, there are 25 malware families exist. Traditional malware detection and anti-virus systems fail to classify the new variants of unknown malware into their corresponding families with the development of malicious code engineering, and it is possible to understand the malware variants and their features for new malware samples that carry variability and polymorphism. The detection methods can rarely detect such variants, but it is important in the cybersecurity field to investigate and detect large-scale malware samples more efficiently. In this paper, an accurate malware family classification model using a convolutional neural network technique is proposed. Malware family recognition is formulated as a multi-classification task, and an accurate solution is obtained by training convolutional neural network with images of malware executable files. Ten families of malware have been considered here for building the models. The image dataset with 2000 instances is applied to a convolutional neural network to build the classifier. The experimental results, based on a dataset of ten classes of malware families and 2000 malware images trained model, provide an accuracy of over 95% in discriminating from malware families. The techniques provide better results for classifying malware into families." @default.
- W3157291221 created "2021-05-10" @default.
- W3157291221 creator A5030543889 @default.
- W3157291221 creator A5032185764 @default.
- W3157291221 date "2021-01-01" @default.
- W3157291221 modified "2023-10-17" @default.
- W3157291221 title "Malware Family Classification Model Using Convolutional Neural Network" @default.
- W3157291221 cites W2010065958 @default.
- W3157291221 cites W2063898900 @default.
- W3157291221 cites W2557513839 @default.
- W3157291221 cites W2795033129 @default.
- W3157291221 cites W2964242288 @default.
- W3157291221 doi "https://doi.org/10.1007/978-981-16-0171-2_3" @default.
- W3157291221 hasPublicationYear "2021" @default.
- W3157291221 type Work @default.
- W3157291221 sameAs 3157291221 @default.
- W3157291221 citedByCount "0" @default.
- W3157291221 crossrefType "book-chapter" @default.
- W3157291221 hasAuthorship W3157291221A5030543889 @default.
- W3157291221 hasAuthorship W3157291221A5032185764 @default.
- W3157291221 hasConcept C111919701 @default.
- W3157291221 hasConcept C119857082 @default.
- W3157291221 hasConcept C124101348 @default.
- W3157291221 hasConcept C153180895 @default.
- W3157291221 hasConcept C154945302 @default.
- W3157291221 hasConcept C160145156 @default.
- W3157291221 hasConcept C38652104 @default.
- W3157291221 hasConcept C41008148 @default.
- W3157291221 hasConcept C50644808 @default.
- W3157291221 hasConcept C541664917 @default.
- W3157291221 hasConcept C81363708 @default.
- W3157291221 hasConcept C95623464 @default.
- W3157291221 hasConceptScore W3157291221C111919701 @default.
- W3157291221 hasConceptScore W3157291221C119857082 @default.
- W3157291221 hasConceptScore W3157291221C124101348 @default.
- W3157291221 hasConceptScore W3157291221C153180895 @default.
- W3157291221 hasConceptScore W3157291221C154945302 @default.
- W3157291221 hasConceptScore W3157291221C160145156 @default.
- W3157291221 hasConceptScore W3157291221C38652104 @default.
- W3157291221 hasConceptScore W3157291221C41008148 @default.
- W3157291221 hasConceptScore W3157291221C50644808 @default.
- W3157291221 hasConceptScore W3157291221C541664917 @default.
- W3157291221 hasConceptScore W3157291221C81363708 @default.
- W3157291221 hasConceptScore W3157291221C95623464 @default.
- W3157291221 hasLocation W31572912211 @default.
- W3157291221 hasOpenAccess W3157291221 @default.
- W3157291221 hasPrimaryLocation W31572912211 @default.
- W3157291221 hasRelatedWork W11389402 @default.
- W3157291221 hasRelatedWork W11793293 @default.
- W3157291221 hasRelatedWork W13426584 @default.
- W3157291221 hasRelatedWork W4680410 @default.
- W3157291221 hasRelatedWork W482721 @default.
- W3157291221 hasRelatedWork W6001892 @default.
- W3157291221 hasRelatedWork W6680660 @default.
- W3157291221 hasRelatedWork W8198582 @default.
- W3157291221 hasRelatedWork W9190101 @default.
- W3157291221 hasRelatedWork W2925925 @default.
- W3157291221 isParatext "false" @default.
- W3157291221 isRetracted "false" @default.
- W3157291221 magId "3157291221" @default.
- W3157291221 workType "book-chapter" @default.