Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157302022> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3157302022 endingPage "385" @default.
- W3157302022 startingPage "357" @default.
- W3157302022 abstract "Abstract Traditionally, graph algorithms get a single graph as input, and then they should decide if this graph satisfies a certain property $$varPhi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Φ</mml:mi> </mml:math> . What happens if this question is modified in a way that we get a possibly infinite family of graphs as an input, and the question is if there is a graph satisfying $$varPhi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Φ</mml:mi> </mml:math> in the family? We approach this question by using formal languages for specifying families of graphs, in particular by regular sets of words. We show that certain graph properties can be decided by studying the syntactic monoid of the specification language L if a certain torsion condition is satisfied. This condition holds trivially if L is regular. More specifically, we use a natural binary encoding of finite graphs over a binary alphabet $$varSigma $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Σ</mml:mi> </mml:math> , and we define a regular set $$mathbb {G}subseteq varSigma ^*$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mi>Σ</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> </mml:math> such that every nonempty word $$win mathbb {G}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> defines a finite and nonempty graph. Also, graph properties can then be syntactically defined as languages over $$varSigma $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Σ</mml:mi> </mml:math> . Then, we ask whether the automaton $$mathcal {A}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>A</mml:mi> </mml:math> specifies some graph satisfying a certain property $$varPhi $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Φ</mml:mi> </mml:math> . Our structural results show that we can answer this question for all “typical” graph properties. In order to show our results, we split L into a finite union of subsets and every subset of this union defines in a natural way a single finite graph F where some edges and vertices are marked. The marked graph in turn defines an infinite graph $$F^infty $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>F</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> and therefore the family of finite subgraphs of $$F^infty $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>F</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> where F appears as an induced subgraph. This yields a geometric description of all graphs specified by L based on splitting L into finitely many pieces; then using the notion of graph retraction, we obtain an easily understandable description of the graphs in each piece." @default.
- W3157302022 created "2021-05-10" @default.
- W3157302022 creator A5015688812 @default.
- W3157302022 creator A5054093863 @default.
- W3157302022 creator A5084905896 @default.
- W3157302022 date "2022-08-01" @default.
- W3157302022 modified "2023-09-25" @default.
- W3157302022 title "Properties of graphs specified by a regular language" @default.
- W3157302022 cites W1563892973 @default.
- W3157302022 cites W1964874178 @default.
- W3157302022 cites W1982678879 @default.
- W3157302022 cites W1993901943 @default.
- W3157302022 cites W2002722727 @default.
- W3157302022 cites W2008440715 @default.
- W3157302022 cites W2029001691 @default.
- W3157302022 cites W2041211107 @default.
- W3157302022 cites W2075551917 @default.
- W3157302022 cites W2092388212 @default.
- W3157302022 cites W2116250539 @default.
- W3157302022 cites W2157390113 @default.
- W3157302022 cites W2337439960 @default.
- W3157302022 cites W2341616572 @default.
- W3157302022 cites W2477674116 @default.
- W3157302022 cites W2602771387 @default.
- W3157302022 cites W2793155354 @default.
- W3157302022 cites W2954176761 @default.
- W3157302022 cites W3036165475 @default.
- W3157302022 cites W3188056966 @default.
- W3157302022 cites W3197605265 @default.
- W3157302022 cites W4205532252 @default.
- W3157302022 cites W4235239597 @default.
- W3157302022 cites W4249804016 @default.
- W3157302022 doi "https://doi.org/10.1007/s00236-022-00427-z" @default.
- W3157302022 hasPublicationYear "2022" @default.
- W3157302022 type Work @default.
- W3157302022 sameAs 3157302022 @default.
- W3157302022 citedByCount "0" @default.
- W3157302022 crossrefType "journal-article" @default.
- W3157302022 hasAuthorship W3157302022A5015688812 @default.
- W3157302022 hasAuthorship W3157302022A5054093863 @default.
- W3157302022 hasAuthorship W3157302022A5084905896 @default.
- W3157302022 hasBestOaLocation W31573020221 @default.
- W3157302022 hasConcept C11413529 @default.
- W3157302022 hasConcept C114614502 @default.
- W3157302022 hasConcept C132525143 @default.
- W3157302022 hasConcept C154945302 @default.
- W3157302022 hasConcept C33923547 @default.
- W3157302022 hasConcept C41008148 @default.
- W3157302022 hasConceptScore W3157302022C11413529 @default.
- W3157302022 hasConceptScore W3157302022C114614502 @default.
- W3157302022 hasConceptScore W3157302022C132525143 @default.
- W3157302022 hasConceptScore W3157302022C154945302 @default.
- W3157302022 hasConceptScore W3157302022C33923547 @default.
- W3157302022 hasConceptScore W3157302022C41008148 @default.
- W3157302022 hasFunder F4320320879 @default.
- W3157302022 hasIssue "4" @default.
- W3157302022 hasLocation W31573020221 @default.
- W3157302022 hasLocation W31573020222 @default.
- W3157302022 hasOpenAccess W3157302022 @default.
- W3157302022 hasPrimaryLocation W31573020221 @default.
- W3157302022 hasRelatedWork W1527576459 @default.
- W3157302022 hasRelatedWork W1596060973 @default.
- W3157302022 hasRelatedWork W1978042415 @default.
- W3157302022 hasRelatedWork W2028852147 @default.
- W3157302022 hasRelatedWork W2386767533 @default.
- W3157302022 hasRelatedWork W2582950667 @default.
- W3157302022 hasRelatedWork W2622512907 @default.
- W3157302022 hasRelatedWork W2765245303 @default.
- W3157302022 hasRelatedWork W2989925696 @default.
- W3157302022 hasRelatedWork W4214740985 @default.
- W3157302022 hasVolume "59" @default.
- W3157302022 isParatext "false" @default.
- W3157302022 isRetracted "false" @default.
- W3157302022 magId "3157302022" @default.
- W3157302022 workType "article" @default.