Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157306382> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3157306382 abstract "Computational tools for forecasting yields and prices for fresh produce have been based on traditional machine learning approaches or time series modelling. We propose here an alternate approach based on deep learning algorithms for forecasting strawberry yields and prices in Santa Barbara county, California. Building the proposed forecasting model comprises three stages: first, the station-based ensemble model (ATT-CNN-LSTM-SeriesNet_Ens) with its compound deep learning components, SeriesNet with Gated Recurrent Unit (GRU) and Convolutional Neural Network LSTM with Attention layer (Att-CNN-LSTM), are trained and tested using the station-based soil temperature and moisture data of SantaBarbara as input and the corresponding strawberry yields or prices as output. Secondly, the remote sensing ensemble model (SIM_CNN-LSTM_Ens), which is an ensemble model of Convolutional NeuralNetwork LSTM (CNN-LSTM) models, is trained and tested using satellite images of the same county as input mapped to the same yields and prices as output. These two ensembles forecast strawberry yields and prices with minimal forecasting errors and highest model correlation for five weeks ahead forecasts.Finally, the forecasts of these two models are ensembled to have a final forecasted value for yields and prices by introducing a voting ensemble. Based on an aggregated performance measure (AGM), it is found that this voting ensemble not only enhances the forecasting performance by 5% compared to its best performing component model but also outperforms the Deep Learning (DL) ensemble model found in literature by 33% for forecasting yields and 21% for forecasting prices" @default.
- W3157306382 created "2021-05-10" @default.
- W3157306382 creator A5002285996 @default.
- W3157306382 creator A5014485735 @default.
- W3157306382 creator A5035038876 @default.
- W3157306382 creator A5070046659 @default.
- W3157306382 date "2021-01-01" @default.
- W3157306382 modified "2023-09-26" @default.
- W3157306382 title "Deep Learning Approaches for Forecasting Strawberry Yields and Prices Using Satellite Images and Station-Based Soil Parameters." @default.
- W3157306382 cites W2116905012 @default.
- W3157306382 cites W2170391700 @default.
- W3157306382 cites W2200121095 @default.
- W3157306382 cites W2409878965 @default.
- W3157306382 cites W2532939453 @default.
- W3157306382 cites W2896196928 @default.
- W3157306382 cites W2900868617 @default.
- W3157306382 cites W2912278761 @default.
- W3157306382 cites W2945692492 @default.
- W3157306382 cites W3090011912 @default.
- W3157306382 cites W3111586086 @default.
- W3157306382 cites W3111836985 @default.
- W3157306382 hasPublicationYear "2021" @default.
- W3157306382 type Work @default.
- W3157306382 sameAs 3157306382 @default.
- W3157306382 citedByCount "0" @default.
- W3157306382 crossrefType "proceedings-article" @default.
- W3157306382 hasAuthorship W3157306382A5002285996 @default.
- W3157306382 hasAuthorship W3157306382A5014485735 @default.
- W3157306382 hasAuthorship W3157306382A5035038876 @default.
- W3157306382 hasAuthorship W3157306382A5070046659 @default.
- W3157306382 hasConcept C108583219 @default.
- W3157306382 hasConcept C119857082 @default.
- W3157306382 hasConcept C119898033 @default.
- W3157306382 hasConcept C154945302 @default.
- W3157306382 hasConcept C41008148 @default.
- W3157306382 hasConcept C45942800 @default.
- W3157306382 hasConcept C50644808 @default.
- W3157306382 hasConcept C81363708 @default.
- W3157306382 hasConceptScore W3157306382C108583219 @default.
- W3157306382 hasConceptScore W3157306382C119857082 @default.
- W3157306382 hasConceptScore W3157306382C119898033 @default.
- W3157306382 hasConceptScore W3157306382C154945302 @default.
- W3157306382 hasConceptScore W3157306382C41008148 @default.
- W3157306382 hasConceptScore W3157306382C45942800 @default.
- W3157306382 hasConceptScore W3157306382C50644808 @default.
- W3157306382 hasConceptScore W3157306382C81363708 @default.
- W3157306382 hasLocation W31573063821 @default.
- W3157306382 hasOpenAccess W3157306382 @default.
- W3157306382 hasPrimaryLocation W31573063821 @default.
- W3157306382 hasRelatedWork W2125135337 @default.
- W3157306382 hasRelatedWork W2845688424 @default.
- W3157306382 hasRelatedWork W2914862314 @default.
- W3157306382 hasRelatedWork W2949886060 @default.
- W3157306382 hasRelatedWork W2997116410 @default.
- W3157306382 hasRelatedWork W2997833886 @default.
- W3157306382 hasRelatedWork W2998806725 @default.
- W3157306382 hasRelatedWork W2999731204 @default.
- W3157306382 hasRelatedWork W3007750421 @default.
- W3157306382 hasRelatedWork W3083375849 @default.
- W3157306382 hasRelatedWork W3087213302 @default.
- W3157306382 hasRelatedWork W3089874435 @default.
- W3157306382 hasRelatedWork W3096902305 @default.
- W3157306382 hasRelatedWork W3097657408 @default.
- W3157306382 hasRelatedWork W3113091919 @default.
- W3157306382 hasRelatedWork W3130136901 @default.
- W3157306382 hasRelatedWork W3134789025 @default.
- W3157306382 hasRelatedWork W3162791672 @default.
- W3157306382 hasRelatedWork W3178906036 @default.
- W3157306382 hasRelatedWork W3204546865 @default.
- W3157306382 isParatext "false" @default.
- W3157306382 isRetracted "false" @default.
- W3157306382 magId "3157306382" @default.
- W3157306382 workType "article" @default.