Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157307328> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3157307328 endingPage "e0250842" @default.
- W3157307328 startingPage "e0250842" @default.
- W3157307328 abstract "Occupational stress is associated with adverse outcomes for medical professionals and patients. In our cross-sectional study with 136 general practices, 26.4% of 550 practice assistants showed high chronic stress. As machine learning strategies offer the opportunity to improve understanding of chronic stress by exploiting complex interactions between variables, we used data from our previous study to derive the best analytic model for chronic stress: four common machine learning (ML) approaches are compared to a classical statistical procedure.We applied four machine learning classifiers (random forest, support vector machine, K-nearest neighbors', and artificial neural network) and logistic regression as standard approach to analyze factors contributing to chronic stress in practice assistants. Chronic stress had been measured by the standardized, self-administered TICS-SSCS questionnaire. The performance of these models was compared in terms of predictive accuracy based on the 'operating area under the curve' (AUC), sensitivity, and positive predictive value.Compared to the standard logistic regression model (AUC 0.636, 95% CI 0.490-0.674), all machine learning models improved prediction: random forest +20.8% (AUC 0.844, 95% CI 0.684-0.843), artificial neural network +12.4% (AUC 0.760, 95% CI 0.605-0.777), support vector machine +15.1% (AUC 0.787, 95% CI 0.634-0.802), and K-nearest neighbours +7.1% (AUC 0.707, 95% CI 0.556-0.735). As best prediction model, random forest showed a sensitivity of 99% and a positive predictive value of 79%. Using the variable frequencies at the decision nodes of the random forest model, the following five work characteristics influence chronic stress: too much work, high demand to concentrate, time pressure, complicated tasks, and insufficient support by practice leaders.Regarding chronic stress prediction, machine learning classifiers, especially random forest, provided more accurate prediction compared to classical logistic regression. Interventions to reduce chronic stress in practice personnel should primarily address the identified workplace characteristics." @default.
- W3157307328 created "2021-05-10" @default.
- W3157307328 creator A5022080474 @default.
- W3157307328 creator A5065362335 @default.
- W3157307328 creator A5073008634 @default.
- W3157307328 date "2021-05-04" @default.
- W3157307328 modified "2023-09-24" @default.
- W3157307328 title "Chronic stress in practice assistants: An analytic approach comparing four machine learning classifiers with a standard logistic regression model" @default.
- W3157307328 cites W1549918667 @default.
- W3157307328 cites W164929780 @default.
- W3157307328 cites W1981976602 @default.
- W3157307328 cites W1983024255 @default.
- W3157307328 cites W2044019616 @default.
- W3157307328 cites W2082661508 @default.
- W3157307328 cites W2150346868 @default.
- W3157307328 cites W2287167201 @default.
- W3157307328 cites W2316306906 @default.
- W3157307328 cites W2460413140 @default.
- W3157307328 cites W2525984666 @default.
- W3157307328 cites W2542806636 @default.
- W3157307328 cites W2605253636 @default.
- W3157307328 cites W2605548712 @default.
- W3157307328 cites W2788724289 @default.
- W3157307328 cites W2883150385 @default.
- W3157307328 cites W2901816194 @default.
- W3157307328 cites W2911964244 @default.
- W3157307328 cites W2912103278 @default.
- W3157307328 cites W2923152359 @default.
- W3157307328 cites W2951757744 @default.
- W3157307328 cites W2971797472 @default.
- W3157307328 cites W2973458857 @default.
- W3157307328 cites W2981679558 @default.
- W3157307328 cites W3000470572 @default.
- W3157307328 cites W3035272103 @default.
- W3157307328 cites W3090644452 @default.
- W3157307328 cites W3108757333 @default.
- W3157307328 doi "https://doi.org/10.1371/journal.pone.0250842" @default.
- W3157307328 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8096078" @default.
- W3157307328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33945572" @default.
- W3157307328 hasPublicationYear "2021" @default.
- W3157307328 type Work @default.
- W3157307328 sameAs 3157307328 @default.
- W3157307328 citedByCount "6" @default.
- W3157307328 countsByYear W31573073282022 @default.
- W3157307328 countsByYear W31573073282023 @default.
- W3157307328 crossrefType "journal-article" @default.
- W3157307328 hasAuthorship W3157307328A5022080474 @default.
- W3157307328 hasAuthorship W3157307328A5065362335 @default.
- W3157307328 hasAuthorship W3157307328A5073008634 @default.
- W3157307328 hasBestOaLocation W31573073281 @default.
- W3157307328 hasConcept C105795698 @default.
- W3157307328 hasConcept C119857082 @default.
- W3157307328 hasConcept C12267149 @default.
- W3157307328 hasConcept C151956035 @default.
- W3157307328 hasConcept C154945302 @default.
- W3157307328 hasConcept C169258074 @default.
- W3157307328 hasConcept C33923547 @default.
- W3157307328 hasConcept C41008148 @default.
- W3157307328 hasConcept C45804977 @default.
- W3157307328 hasConcept C50644808 @default.
- W3157307328 hasConcept C58471807 @default.
- W3157307328 hasConcept C71924100 @default.
- W3157307328 hasConcept C84525736 @default.
- W3157307328 hasConceptScore W3157307328C105795698 @default.
- W3157307328 hasConceptScore W3157307328C119857082 @default.
- W3157307328 hasConceptScore W3157307328C12267149 @default.
- W3157307328 hasConceptScore W3157307328C151956035 @default.
- W3157307328 hasConceptScore W3157307328C154945302 @default.
- W3157307328 hasConceptScore W3157307328C169258074 @default.
- W3157307328 hasConceptScore W3157307328C33923547 @default.
- W3157307328 hasConceptScore W3157307328C41008148 @default.
- W3157307328 hasConceptScore W3157307328C45804977 @default.
- W3157307328 hasConceptScore W3157307328C50644808 @default.
- W3157307328 hasConceptScore W3157307328C58471807 @default.
- W3157307328 hasConceptScore W3157307328C71924100 @default.
- W3157307328 hasConceptScore W3157307328C84525736 @default.
- W3157307328 hasIssue "5" @default.
- W3157307328 hasLocation W31573073281 @default.
- W3157307328 hasLocation W31573073282 @default.
- W3157307328 hasLocation W31573073283 @default.
- W3157307328 hasLocation W31573073284 @default.
- W3157307328 hasOpenAccess W3157307328 @default.
- W3157307328 hasPrimaryLocation W31573073281 @default.
- W3157307328 hasRelatedWork W3127425528 @default.
- W3157307328 hasRelatedWork W3143658565 @default.
- W3157307328 hasRelatedWork W4200437006 @default.
- W3157307328 hasRelatedWork W4246246790 @default.
- W3157307328 hasRelatedWork W4281846282 @default.
- W3157307328 hasRelatedWork W4283762323 @default.
- W3157307328 hasRelatedWork W4293191462 @default.
- W3157307328 hasRelatedWork W4312707991 @default.
- W3157307328 hasRelatedWork W4321636153 @default.
- W3157307328 hasRelatedWork W4322731370 @default.
- W3157307328 hasVolume "16" @default.
- W3157307328 isParatext "false" @default.
- W3157307328 isRetracted "false" @default.
- W3157307328 magId "3157307328" @default.
- W3157307328 workType "article" @default.