Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157338082> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3157338082 endingPage "36" @default.
- W3157338082 startingPage "31" @default.
- W3157338082 abstract "One of the key objectives in precision medicine is to determine the right dose for the individual patient at the right time so that the desired therapeutic effect is achieved. The focus of this work is on modeling of pharmacokinetic/ pharmacodynamic data to facilitate the achievement of this goal. One novelty of our approach is to use structured models, such as physiologically-based compartment models and un-structured models, such as artificial neural networks or Gaussian Processes in a hierarchical fashion. The reason for using a hierarchical structure is that there are available well-established empirical compartmental and mechanistic physiologically based models, which do not explicitly account for various predictive covariates such as co-administered drugs or different laboratory measurements such as total protein, blood urea nitrogen, or urine output. Thus, we extend the structured models with the second hierarchical layer of an un-structured model and utilize the unstructured model to capture the effects of those covariates. Secondly, we employ Bayesian inference which allows direct quantification of uncertainty in the model predictions. Thirdly, utilization of Bayesian inference for the unstructured models (specifically Bayesian neural networks) allows the determination of important predictive covariates such as serum creatinine, blood urea nitrogen, or urine output." @default.
- W3157338082 created "2021-05-10" @default.
- W3157338082 creator A5000608521 @default.
- W3157338082 creator A5006815808 @default.
- W3157338082 creator A5052135588 @default.
- W3157338082 date "2020-01-01" @default.
- W3157338082 modified "2023-10-16" @default.
- W3157338082 title "Structured and Unstructured (Hybrid) Modeling in Precision Medicine" @default.
- W3157338082 cites W1550111394 @default.
- W3157338082 cites W1567512734 @default.
- W3157338082 cites W1746819321 @default.
- W3157338082 cites W2043701535 @default.
- W3157338082 cites W2124895395 @default.
- W3157338082 cites W2143876379 @default.
- W3157338082 cites W2152073293 @default.
- W3157338082 cites W2909880112 @default.
- W3157338082 doi "https://doi.org/10.1016/b978-0-12-823377-1.50006-9" @default.
- W3157338082 hasPublicationYear "2020" @default.
- W3157338082 type Work @default.
- W3157338082 sameAs 3157338082 @default.
- W3157338082 citedByCount "0" @default.
- W3157338082 crossrefType "book-chapter" @default.
- W3157338082 hasAuthorship W3157338082A5000608521 @default.
- W3157338082 hasAuthorship W3157338082A5006815808 @default.
- W3157338082 hasAuthorship W3157338082A5052135588 @default.
- W3157338082 hasConcept C107673813 @default.
- W3157338082 hasConcept C119043178 @default.
- W3157338082 hasConcept C119857082 @default.
- W3157338082 hasConcept C124101348 @default.
- W3157338082 hasConcept C144986985 @default.
- W3157338082 hasConcept C154945302 @default.
- W3157338082 hasConcept C15744967 @default.
- W3157338082 hasConcept C160234255 @default.
- W3157338082 hasConcept C2776214188 @default.
- W3157338082 hasConcept C2778738651 @default.
- W3157338082 hasConcept C41008148 @default.
- W3157338082 hasConcept C50644808 @default.
- W3157338082 hasConcept C77805123 @default.
- W3157338082 hasConceptScore W3157338082C107673813 @default.
- W3157338082 hasConceptScore W3157338082C119043178 @default.
- W3157338082 hasConceptScore W3157338082C119857082 @default.
- W3157338082 hasConceptScore W3157338082C124101348 @default.
- W3157338082 hasConceptScore W3157338082C144986985 @default.
- W3157338082 hasConceptScore W3157338082C154945302 @default.
- W3157338082 hasConceptScore W3157338082C15744967 @default.
- W3157338082 hasConceptScore W3157338082C160234255 @default.
- W3157338082 hasConceptScore W3157338082C2776214188 @default.
- W3157338082 hasConceptScore W3157338082C2778738651 @default.
- W3157338082 hasConceptScore W3157338082C41008148 @default.
- W3157338082 hasConceptScore W3157338082C50644808 @default.
- W3157338082 hasConceptScore W3157338082C77805123 @default.
- W3157338082 hasLocation W31573380821 @default.
- W3157338082 hasOpenAccess W3157338082 @default.
- W3157338082 hasPrimaryLocation W31573380821 @default.
- W3157338082 hasRelatedWork W1974719870 @default.
- W3157338082 hasRelatedWork W2114746372 @default.
- W3157338082 hasRelatedWork W2165479236 @default.
- W3157338082 hasRelatedWork W2511279186 @default.
- W3157338082 hasRelatedWork W2963058055 @default.
- W3157338082 hasRelatedWork W3029748970 @default.
- W3157338082 hasRelatedWork W4221162807 @default.
- W3157338082 hasRelatedWork W4255939854 @default.
- W3157338082 hasRelatedWork W4285394657 @default.
- W3157338082 hasRelatedWork W1629725936 @default.
- W3157338082 isParatext "false" @default.
- W3157338082 isRetracted "false" @default.
- W3157338082 magId "3157338082" @default.
- W3157338082 workType "book-chapter" @default.