Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157353714> ?p ?o ?g. }
- W3157353714 endingPage "1" @default.
- W3157353714 startingPage "1" @default.
- W3157353714 abstract "Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e., category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake scene detection." @default.
- W3157353714 created "2021-05-10" @default.
- W3157353714 creator A5006197413 @default.
- W3157353714 creator A5006907783 @default.
- W3157353714 creator A5038810646 @default.
- W3157353714 creator A5088917379 @default.
- W3157353714 date "2021-01-01" @default.
- W3157353714 modified "2023-09-24" @default.
- W3157353714 title "Object-level Scene Context Prediction" @default.
- W3157353714 cites W1536680647 @default.
- W3157353714 cites W1992971572 @default.
- W3157353714 cites W1999378860 @default.
- W3157353714 cites W2017814585 @default.
- W3157353714 cites W2048852482 @default.
- W3157353714 cites W2109884388 @default.
- W3157353714 cites W2113107168 @default.
- W3157353714 cites W2116510030 @default.
- W3157353714 cites W2125215748 @default.
- W3157353714 cites W2129259959 @default.
- W3157353714 cites W2134927309 @default.
- W3157353714 cites W2141364309 @default.
- W3157353714 cites W2145315825 @default.
- W3157353714 cites W2160956336 @default.
- W3157353714 cites W2162762921 @default.
- W3157353714 cites W2166761907 @default.
- W3157353714 cites W2461221508 @default.
- W3157353714 cites W2509413994 @default.
- W3157353714 cites W2560023338 @default.
- W3157353714 cites W2561196672 @default.
- W3157353714 cites W2579549467 @default.
- W3157353714 cites W2593414223 @default.
- W3157353714 cites W2768124800 @default.
- W3157353714 cites W2770875015 @default.
- W3157353714 cites W2798622261 @default.
- W3157353714 cites W2799215407 @default.
- W3157353714 cites W2810181048 @default.
- W3157353714 cites W2883820570 @default.
- W3157353714 cites W2895256453 @default.
- W3157353714 cites W2937970997 @default.
- W3157353714 cites W2961334035 @default.
- W3157353714 cites W2962785568 @default.
- W3157353714 cites W2962974533 @default.
- W3157353714 cites W2963037989 @default.
- W3157353714 cites W2963049618 @default.
- W3157353714 cites W2963073614 @default.
- W3157353714 cites W2963184176 @default.
- W3157353714 cites W2963263706 @default.
- W3157353714 cites W2963306805 @default.
- W3157353714 cites W2963420272 @default.
- W3157353714 cites W2963522749 @default.
- W3157353714 cites W2963539305 @default.
- W3157353714 cites W2963561004 @default.
- W3157353714 cites W2963800363 @default.
- W3157353714 cites W2964080601 @default.
- W3157353714 cites W2964216930 @default.
- W3157353714 cites W2997245201 @default.
- W3157353714 cites W3000176874 @default.
- W3157353714 cites W3125372245 @default.
- W3157353714 cites W343636949 @default.
- W3157353714 cites W845365781 @default.
- W3157353714 doi "https://doi.org/10.1109/tpami.2021.3075676" @default.
- W3157353714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33905322" @default.
- W3157353714 hasPublicationYear "2021" @default.
- W3157353714 type Work @default.
- W3157353714 sameAs 3157353714 @default.
- W3157353714 citedByCount "0" @default.
- W3157353714 crossrefType "journal-article" @default.
- W3157353714 hasAuthorship W3157353714A5006197413 @default.
- W3157353714 hasAuthorship W3157353714A5006907783 @default.
- W3157353714 hasAuthorship W3157353714A5038810646 @default.
- W3157353714 hasAuthorship W3157353714A5088917379 @default.
- W3157353714 hasConcept C124504099 @default.
- W3157353714 hasConcept C151730666 @default.
- W3157353714 hasConcept C153180895 @default.
- W3157353714 hasConcept C154945302 @default.
- W3157353714 hasConcept C169760540 @default.
- W3157353714 hasConcept C183322885 @default.
- W3157353714 hasConcept C184337299 @default.
- W3157353714 hasConcept C197654239 @default.
- W3157353714 hasConcept C199360897 @default.
- W3157353714 hasConcept C26760741 @default.
- W3157353714 hasConcept C2776151529 @default.
- W3157353714 hasConcept C2779343474 @default.
- W3157353714 hasConcept C2781238097 @default.
- W3157353714 hasConcept C2911011789 @default.
- W3157353714 hasConcept C31972630 @default.
- W3157353714 hasConcept C41008148 @default.
- W3157353714 hasConcept C64876066 @default.
- W3157353714 hasConcept C86803240 @default.
- W3157353714 hasConcept C89600930 @default.
- W3157353714 hasConceptScore W3157353714C124504099 @default.
- W3157353714 hasConceptScore W3157353714C151730666 @default.
- W3157353714 hasConceptScore W3157353714C153180895 @default.
- W3157353714 hasConceptScore W3157353714C154945302 @default.
- W3157353714 hasConceptScore W3157353714C169760540 @default.
- W3157353714 hasConceptScore W3157353714C183322885 @default.
- W3157353714 hasConceptScore W3157353714C184337299 @default.
- W3157353714 hasConceptScore W3157353714C197654239 @default.