Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157360088> ?p ?o ?g. }
- W3157360088 endingPage "102332" @default.
- W3157360088 startingPage "102332" @default.
- W3157360088 abstract "• Urban material gradients can map cities with spaceborne hyperspectral images. • The gradient mapping does not require prior determination of pure pixels. • This study evaluated the transferability of urban material gradients to a new area. • The results show the transferability potential of these gradients. Urban areas contain a complex mixture of surface materials resulting in mixed pixels that are challenging to handle with conventional mapping approaches. In particular, for spaceborne hyperspectral images (HSIs) with sufficient spectral resolution to differentiate urban surface materials, the spatial resolution of 30 m (e.g. EnMAP HSIs) makes it difficult to find the spectrally pure pixels required for detailed mapping of urban surface materials. Gradient analysis, which is commonly used in ecology to map natural vegetation consisting of a complex mixture of species, is therefore a promising and practical tool for pattern recognition of urban surface material mixtures. However, the gradients are determined in a data-driven manner, so analysis of their spatial transferability is urgently required. We selected two areas—the Ostbahnhof (Ost) area and the Nymphenburg (Nym) area in Munich, Germany—with simulated EnMAP HSIs and material maps, treating the Ost area as the target area and the Nym area as the well-known area. Three gradient analysis approaches were subsequently proposed for pattern recognition in the Ost area for the cases of (i) sufficient samples collected in the Ost area; (ii) some samples in the Ost area; and (iii) no samples in the Ost area. The Ost samples were used to generate an ordination space in case (i), while the Nym samples were used to create the ordination space to support the pattern recognition of the Ost area in cases (ii) and (iii). The Mantel statistical results show that the sample distributions in the two ordination spaces are similar, with high confidence (the Mantel statistics are 0.995 and 0.990, with a significance of 0.001 in 999 free permutations of the Ost and Nym samples). The results of the partial least square regression models and 10-fold cross-validation show a strong relationship (the calculation-validation R 2 values on the first gradient among the three approaches are 0.898, 0.892; 0.760, 0.743; and 0.860, 0.836, and those on the second gradient are 0.433, 0.351; 0.698, 0.648; and 0.736, 0.646) between the ordination scores of the samples and their reflectance values. The mapping results of the Ost area from three approaches also show similar patterns (e.g. the distribution of vegetation, artificial materials, water, and ceremony area) and characteristics of urban structures (the intensity of buildings). Therefore, our findings can help assess the transferability of urban material gradients between similar urban areas." @default.
- W3157360088 created "2021-05-10" @default.
- W3157360088 creator A5025016784 @default.
- W3157360088 creator A5034805489 @default.
- W3157360088 creator A5041252131 @default.
- W3157360088 creator A5078698089 @default.
- W3157360088 date "2021-08-01" @default.
- W3157360088 modified "2023-10-17" @default.
- W3157360088 title "Are urban material gradients transferable between areas?" @default.
- W3157360088 cites W1006483632 @default.
- W3157360088 cites W1772504446 @default.
- W3157360088 cites W1965173367 @default.
- W3157360088 cites W1990255627 @default.
- W3157360088 cites W2002318402 @default.
- W3157360088 cites W2006131980 @default.
- W3157360088 cites W2009235968 @default.
- W3157360088 cites W2021597230 @default.
- W3157360088 cites W2049827513 @default.
- W3157360088 cites W2086060411 @default.
- W3157360088 cites W2091258541 @default.
- W3157360088 cites W2094153371 @default.
- W3157360088 cites W2095005842 @default.
- W3157360088 cites W2098057602 @default.
- W3157360088 cites W2099172632 @default.
- W3157360088 cites W2127495569 @default.
- W3157360088 cites W2128228580 @default.
- W3157360088 cites W2131697388 @default.
- W3157360088 cites W2146062404 @default.
- W3157360088 cites W2148654450 @default.
- W3157360088 cites W2158400785 @default.
- W3157360088 cites W2159411209 @default.
- W3157360088 cites W2173760900 @default.
- W3157360088 cites W2320824162 @default.
- W3157360088 cites W2791116205 @default.
- W3157360088 cites W2803735667 @default.
- W3157360088 cites W2808402497 @default.
- W3157360088 cites W2884419653 @default.
- W3157360088 cites W2914118367 @default.
- W3157360088 cites W3011301395 @default.
- W3157360088 cites W3109047179 @default.
- W3157360088 cites W4231232088 @default.
- W3157360088 doi "https://doi.org/10.1016/j.jag.2021.102332" @default.
- W3157360088 hasPublicationYear "2021" @default.
- W3157360088 type Work @default.
- W3157360088 sameAs 3157360088 @default.
- W3157360088 citedByCount "2" @default.
- W3157360088 countsByYear W31573600882022 @default.
- W3157360088 countsByYear W31573600882023 @default.
- W3157360088 crossrefType "journal-article" @default.
- W3157360088 hasAuthorship W3157360088A5025016784 @default.
- W3157360088 hasAuthorship W3157360088A5034805489 @default.
- W3157360088 hasAuthorship W3157360088A5041252131 @default.
- W3157360088 hasAuthorship W3157360088A5078698089 @default.
- W3157360088 hasBestOaLocation W31573600881 @default.
- W3157360088 hasConcept C119857082 @default.
- W3157360088 hasConcept C122748992 @default.
- W3157360088 hasConcept C140331021 @default.
- W3157360088 hasConcept C142724271 @default.
- W3157360088 hasConcept C154945302 @default.
- W3157360088 hasConcept C159078339 @default.
- W3157360088 hasConcept C160633673 @default.
- W3157360088 hasConcept C175570560 @default.
- W3157360088 hasConcept C18903297 @default.
- W3157360088 hasConcept C205372480 @default.
- W3157360088 hasConcept C205649164 @default.
- W3157360088 hasConcept C2776133958 @default.
- W3157360088 hasConcept C2778368647 @default.
- W3157360088 hasConcept C39432304 @default.
- W3157360088 hasConcept C41008148 @default.
- W3157360088 hasConcept C58640448 @default.
- W3157360088 hasConcept C61272859 @default.
- W3157360088 hasConcept C62649853 @default.
- W3157360088 hasConcept C71924100 @default.
- W3157360088 hasConcept C86803240 @default.
- W3157360088 hasConceptScore W3157360088C119857082 @default.
- W3157360088 hasConceptScore W3157360088C122748992 @default.
- W3157360088 hasConceptScore W3157360088C140331021 @default.
- W3157360088 hasConceptScore W3157360088C142724271 @default.
- W3157360088 hasConceptScore W3157360088C154945302 @default.
- W3157360088 hasConceptScore W3157360088C159078339 @default.
- W3157360088 hasConceptScore W3157360088C160633673 @default.
- W3157360088 hasConceptScore W3157360088C175570560 @default.
- W3157360088 hasConceptScore W3157360088C18903297 @default.
- W3157360088 hasConceptScore W3157360088C205372480 @default.
- W3157360088 hasConceptScore W3157360088C205649164 @default.
- W3157360088 hasConceptScore W3157360088C2776133958 @default.
- W3157360088 hasConceptScore W3157360088C2778368647 @default.
- W3157360088 hasConceptScore W3157360088C39432304 @default.
- W3157360088 hasConceptScore W3157360088C41008148 @default.
- W3157360088 hasConceptScore W3157360088C58640448 @default.
- W3157360088 hasConceptScore W3157360088C61272859 @default.
- W3157360088 hasConceptScore W3157360088C62649853 @default.
- W3157360088 hasConceptScore W3157360088C71924100 @default.
- W3157360088 hasConceptScore W3157360088C86803240 @default.
- W3157360088 hasFunder F4320322725 @default.
- W3157360088 hasLocation W31573600881 @default.
- W3157360088 hasLocation W31573600882 @default.
- W3157360088 hasOpenAccess W3157360088 @default.