Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157380040> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3157380040 abstract "Liver segmentation is widely used in medicine for volumetric or morphological analysis. This paper presents a system to automatically segment liver from the CT scans for real clinical application. The proposed system uses one of the most suitable networks in biomedical segmentation U-net in the assistance of Convolutional Neural Network (CNN). The preprocessed CT scans with and without liver are divided into five position groups and labelled with group number. In the next step, we train CNN for automatic localization of the CT scans. Afterwards, three networks based on U-net are fed with images in the same group having liver and then trained for liver segmentation separately. The proposed system is evaluated on the scans from LiTS2017 and 3Dircadb database. The average IOU score improves to 92.8% compared with state-of-the-art. Meanwhile, the novel system demonstrates its flexibility in the choice of training data and its universality in testing data, which is suitable for both scans with liver and scans without liver. The experimental results indicate that the proposed system facilitates the procedure of liver segmentation and has its potential for accurate liver segmentation for clinical application." @default.
- W3157380040 created "2021-05-10" @default.
- W3157380040 creator A5023363049 @default.
- W3157380040 creator A5038006108 @default.
- W3157380040 date "2020-12-01" @default.
- W3157380040 modified "2023-09-23" @default.
- W3157380040 title "Automatic liver segmentation using U-net in the assistance of CNN" @default.
- W3157380040 cites W1847836727 @default.
- W3157380040 cites W1997151764 @default.
- W3157380040 cites W2001881071 @default.
- W3157380040 cites W2024924062 @default.
- W3157380040 cites W2037188857 @default.
- W3157380040 cites W2091695913 @default.
- W3157380040 cites W2116036882 @default.
- W3157380040 cites W2338079336 @default.
- W3157380040 cites W2627007876 @default.
- W3157380040 cites W2791680898 @default.
- W3157380040 cites W2792124446 @default.
- W3157380040 cites W2909646705 @default.
- W3157380040 cites W2913637767 @default.
- W3157380040 cites W2916686134 @default.
- W3157380040 cites W2950253603 @default.
- W3157380040 cites W2964227007 @default.
- W3157380040 doi "https://doi.org/10.1109/icicas51530.2020.00083" @default.
- W3157380040 hasPublicationYear "2020" @default.
- W3157380040 type Work @default.
- W3157380040 sameAs 3157380040 @default.
- W3157380040 citedByCount "2" @default.
- W3157380040 countsByYear W31573800402022 @default.
- W3157380040 countsByYear W31573800402023 @default.
- W3157380040 crossrefType "proceedings-article" @default.
- W3157380040 hasAuthorship W3157380040A5023363049 @default.
- W3157380040 hasAuthorship W3157380040A5038006108 @default.
- W3157380040 hasConcept C124504099 @default.
- W3157380040 hasConcept C14166107 @default.
- W3157380040 hasConcept C153180895 @default.
- W3157380040 hasConcept C154945302 @default.
- W3157380040 hasConcept C2524010 @default.
- W3157380040 hasConcept C31972630 @default.
- W3157380040 hasConcept C33923547 @default.
- W3157380040 hasConcept C41008148 @default.
- W3157380040 hasConcept C89600930 @default.
- W3157380040 hasConceptScore W3157380040C124504099 @default.
- W3157380040 hasConceptScore W3157380040C14166107 @default.
- W3157380040 hasConceptScore W3157380040C153180895 @default.
- W3157380040 hasConceptScore W3157380040C154945302 @default.
- W3157380040 hasConceptScore W3157380040C2524010 @default.
- W3157380040 hasConceptScore W3157380040C31972630 @default.
- W3157380040 hasConceptScore W3157380040C33923547 @default.
- W3157380040 hasConceptScore W3157380040C41008148 @default.
- W3157380040 hasConceptScore W3157380040C89600930 @default.
- W3157380040 hasLocation W31573800401 @default.
- W3157380040 hasOpenAccess W3157380040 @default.
- W3157380040 hasPrimaryLocation W31573800401 @default.
- W3157380040 hasRelatedWork W1507266234 @default.
- W3157380040 hasRelatedWork W1669643531 @default.
- W3157380040 hasRelatedWork W1721780360 @default.
- W3157380040 hasRelatedWork W2110230079 @default.
- W3157380040 hasRelatedWork W2117664411 @default.
- W3157380040 hasRelatedWork W2117933325 @default.
- W3157380040 hasRelatedWork W2122581818 @default.
- W3157380040 hasRelatedWork W2159066190 @default.
- W3157380040 hasRelatedWork W2739874619 @default.
- W3157380040 hasRelatedWork W1967061043 @default.
- W3157380040 isParatext "false" @default.
- W3157380040 isRetracted "false" @default.
- W3157380040 magId "3157380040" @default.
- W3157380040 workType "article" @default.