Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157389920> ?p ?o ?g. }
- W3157389920 endingPage "18193" @default.
- W3157389920 startingPage "18183" @default.
- W3157389920 abstract "Identifying underlying governing equations and relevant information from high-dimensional observable data has always been a challenge in physical sciences. With the recent advances in sensing technology and available datasets, various machine learning techniques have made it possible to distill underlying mathematical models from sufficiently clean and usable datasets. However, most of these techniques rely on prior knowledge of the system and noise free data obtained by simulation of physical system or by direct measurements of the signals. Hence, the inference obtained by using these techniques is often unreliable to be used in the real world where observed data are noisy and require feature engineering to extract relevant features. In this work, we provide a deep-learning framework that extracts relevant information from real-world videos of highly stochastic systems, with no prior knowledge and distills the underlying governing equation representing the system. We demonstrate this approach on videos of confined multi-agent/particle systems of ants, termites, fishes as well as a simulated confined multi-particle system with elastic collision interactions. Furthermore, we explore how these seemingly diverse systems have predictable underlying behavior. In this study, we have used motion tracking to extract spatial trajectories of individual agents/particles in a system, and by using LSTM VAE we projected these features on to a low-dimensional latent space from which the underlying differential equation representing the data was extracted using SINDy framework." @default.
- W3157389920 created "2021-05-10" @default.
- W3157389920 creator A5008745801 @default.
- W3157389920 creator A5045089634 @default.
- W3157389920 date "2022-06-15" @default.
- W3157389920 modified "2023-09-25" @default.
- W3157389920 title "Dominant motion identification of multi-particle system using deep learning from video" @default.
- W3157389920 cites W1601124178 @default.
- W3157389920 cites W1901616594 @default.
- W3157389920 cites W1979769287 @default.
- W3157389920 cites W2005708641 @default.
- W3157389920 cites W2011535901 @default.
- W3157389920 cites W2037486322 @default.
- W3157389920 cites W2040870580 @default.
- W3157389920 cites W2046410634 @default.
- W3157389920 cites W2064675550 @default.
- W3157389920 cites W2069143585 @default.
- W3157389920 cites W2074603814 @default.
- W3157389920 cites W2081930221 @default.
- W3157389920 cites W2124411978 @default.
- W3157389920 cites W2130151115 @default.
- W3157389920 cites W2143612262 @default.
- W3157389920 cites W2146793276 @default.
- W3157389920 cites W2159670376 @default.
- W3157389920 cites W2239232218 @default.
- W3157389920 cites W2294621169 @default.
- W3157389920 cites W2525748878 @default.
- W3157389920 cites W2565575913 @default.
- W3157389920 cites W2573798107 @default.
- W3157389920 cites W2573864470 @default.
- W3157389920 cites W2599719249 @default.
- W3157389920 cites W2605147767 @default.
- W3157389920 cites W2889761511 @default.
- W3157389920 cites W2890429072 @default.
- W3157389920 cites W2891503716 @default.
- W3157389920 cites W2903660960 @default.
- W3157389920 cites W2909431601 @default.
- W3157389920 cites W2941972182 @default.
- W3157389920 cites W2950361482 @default.
- W3157389920 cites W2963608065 @default.
- W3157389920 cites W2964269434 @default.
- W3157389920 cites W2981906852 @default.
- W3157389920 cites W3015959599 @default.
- W3157389920 cites W3027079715 @default.
- W3157389920 cites W3105919389 @default.
- W3157389920 cites W3106165820 @default.
- W3157389920 doi "https://doi.org/10.1007/s00521-022-07421-z" @default.
- W3157389920 hasPublicationYear "2022" @default.
- W3157389920 type Work @default.
- W3157389920 sameAs 3157389920 @default.
- W3157389920 citedByCount "3" @default.
- W3157389920 countsByYear W31573899202022 @default.
- W3157389920 countsByYear W31573899202023 @default.
- W3157389920 crossrefType "journal-article" @default.
- W3157389920 hasAuthorship W3157389920A5008745801 @default.
- W3157389920 hasAuthorship W3157389920A5045089634 @default.
- W3157389920 hasBestOaLocation W31573899202 @default.
- W3157389920 hasConcept C108583219 @default.
- W3157389920 hasConcept C111919701 @default.
- W3157389920 hasConcept C115961682 @default.
- W3157389920 hasConcept C116672817 @default.
- W3157389920 hasConcept C116834253 @default.
- W3157389920 hasConcept C119857082 @default.
- W3157389920 hasConcept C121332964 @default.
- W3157389920 hasConcept C134306372 @default.
- W3157389920 hasConcept C136764020 @default.
- W3157389920 hasConcept C154945302 @default.
- W3157389920 hasConcept C179003449 @default.
- W3157389920 hasConcept C2776214188 @default.
- W3157389920 hasConcept C2780615836 @default.
- W3157389920 hasConcept C33923547 @default.
- W3157389920 hasConcept C41008148 @default.
- W3157389920 hasConcept C51955184 @default.
- W3157389920 hasConcept C59822182 @default.
- W3157389920 hasConcept C62520636 @default.
- W3157389920 hasConcept C68597687 @default.
- W3157389920 hasConcept C86803240 @default.
- W3157389920 hasConcept C99498987 @default.
- W3157389920 hasConceptScore W3157389920C108583219 @default.
- W3157389920 hasConceptScore W3157389920C111919701 @default.
- W3157389920 hasConceptScore W3157389920C115961682 @default.
- W3157389920 hasConceptScore W3157389920C116672817 @default.
- W3157389920 hasConceptScore W3157389920C116834253 @default.
- W3157389920 hasConceptScore W3157389920C119857082 @default.
- W3157389920 hasConceptScore W3157389920C121332964 @default.
- W3157389920 hasConceptScore W3157389920C134306372 @default.
- W3157389920 hasConceptScore W3157389920C136764020 @default.
- W3157389920 hasConceptScore W3157389920C154945302 @default.
- W3157389920 hasConceptScore W3157389920C179003449 @default.
- W3157389920 hasConceptScore W3157389920C2776214188 @default.
- W3157389920 hasConceptScore W3157389920C2780615836 @default.
- W3157389920 hasConceptScore W3157389920C33923547 @default.
- W3157389920 hasConceptScore W3157389920C41008148 @default.
- W3157389920 hasConceptScore W3157389920C51955184 @default.
- W3157389920 hasConceptScore W3157389920C59822182 @default.
- W3157389920 hasConceptScore W3157389920C62520636 @default.
- W3157389920 hasConceptScore W3157389920C68597687 @default.
- W3157389920 hasConceptScore W3157389920C86803240 @default.