Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157462034> ?p ?o ?g. }
- W3157462034 endingPage "11" @default.
- W3157462034 startingPage "1" @default.
- W3157462034 abstract "Wind power has gained wide popularity due to the increasingly serious energy and environmental crisis. However, the severe operational conditions often bring faults and failures in the wind turbines, which may significantly degrade the security and reliability of large-scale wind farms. In practice, accurate and efficient fault detection and diagnosis are crucial for safe and reliable system operation. This work develops an effective deep learning solution using a convolutional neural network to address the said problem. In addition, the linear discriminant criterion-based metric learning technique is adopted in the model training process of the proposed solution to improve the algorithmic robustness under noisy conditions. The proposed solution can efficiently extract the features of the mechanical faults. The proposed algorithmic solution is implemented and assessed through a range of experiments for different scenarios of faults. The numerical results demonstrated that the proposed solution can well detect and diagnose the multiple coexisting faults of the operating wind turbine gearbox." @default.
- W3157462034 created "2021-05-10" @default.
- W3157462034 creator A5012470655 @default.
- W3157462034 creator A5016359274 @default.
- W3157462034 creator A5063249858 @default.
- W3157462034 creator A5074225885 @default.
- W3157462034 creator A5082893938 @default.
- W3157462034 date "2021-04-27" @default.
- W3157462034 modified "2023-10-02" @default.
- W3157462034 title "Machine-Learning-Based Intelligent Mechanical Fault Detection and Diagnosis of Wind Turbines" @default.
- W3157462034 cites W1605077306 @default.
- W3157462034 cites W1923607774 @default.
- W3157462034 cites W1930449326 @default.
- W3157462034 cites W1967352108 @default.
- W3157462034 cites W1970327914 @default.
- W3157462034 cites W1971219721 @default.
- W3157462034 cites W1974225813 @default.
- W3157462034 cites W1975514583 @default.
- W3157462034 cites W1978290769 @default.
- W3157462034 cites W1998092191 @default.
- W3157462034 cites W2042641006 @default.
- W3157462034 cites W2043020486 @default.
- W3157462034 cites W2045186954 @default.
- W3157462034 cites W2052506902 @default.
- W3157462034 cites W2053443947 @default.
- W3157462034 cites W2062658440 @default.
- W3157462034 cites W2072872670 @default.
- W3157462034 cites W2076863095 @default.
- W3157462034 cites W2107074288 @default.
- W3157462034 cites W2121598944 @default.
- W3157462034 cites W2123118998 @default.
- W3157462034 cites W2126584714 @default.
- W3157462034 cites W2131065845 @default.
- W3157462034 cites W2153939252 @default.
- W3157462034 cites W2163984882 @default.
- W3157462034 cites W2195063230 @default.
- W3157462034 cites W2258884143 @default.
- W3157462034 cites W2317595875 @default.
- W3157462034 cites W2324044936 @default.
- W3157462034 cites W2341973567 @default.
- W3157462034 cites W2401383790 @default.
- W3157462034 cites W2461729787 @default.
- W3157462034 cites W2471080557 @default.
- W3157462034 cites W2480364715 @default.
- W3157462034 cites W2541047822 @default.
- W3157462034 cites W2584994008 @default.
- W3157462034 cites W2603304445 @default.
- W3157462034 cites W2728797517 @default.
- W3157462034 cites W2768753204 @default.
- W3157462034 cites W2907007702 @default.
- W3157462034 cites W2919115771 @default.
- W3157462034 doi "https://doi.org/10.1155/2021/9915084" @default.
- W3157462034 hasPublicationYear "2021" @default.
- W3157462034 type Work @default.
- W3157462034 sameAs 3157462034 @default.
- W3157462034 citedByCount "3" @default.
- W3157462034 countsByYear W31574620342022 @default.
- W3157462034 countsByYear W31574620342023 @default.
- W3157462034 crossrefType "journal-article" @default.
- W3157462034 hasAuthorship W3157462034A5012470655 @default.
- W3157462034 hasAuthorship W3157462034A5016359274 @default.
- W3157462034 hasAuthorship W3157462034A5063249858 @default.
- W3157462034 hasAuthorship W3157462034A5074225885 @default.
- W3157462034 hasAuthorship W3157462034A5082893938 @default.
- W3157462034 hasBestOaLocation W31574620341 @default.
- W3157462034 hasConcept C104317684 @default.
- W3157462034 hasConcept C108583219 @default.
- W3157462034 hasConcept C111919701 @default.
- W3157462034 hasConcept C119599485 @default.
- W3157462034 hasConcept C119857082 @default.
- W3157462034 hasConcept C121332964 @default.
- W3157462034 hasConcept C127313418 @default.
- W3157462034 hasConcept C127413603 @default.
- W3157462034 hasConcept C146978453 @default.
- W3157462034 hasConcept C152745839 @default.
- W3157462034 hasConcept C154945302 @default.
- W3157462034 hasConcept C163258240 @default.
- W3157462034 hasConcept C165205528 @default.
- W3157462034 hasConcept C172707124 @default.
- W3157462034 hasConcept C175551986 @default.
- W3157462034 hasConcept C176217482 @default.
- W3157462034 hasConcept C185592680 @default.
- W3157462034 hasConcept C200601418 @default.
- W3157462034 hasConcept C204323151 @default.
- W3157462034 hasConcept C21547014 @default.
- W3157462034 hasConcept C2775846686 @default.
- W3157462034 hasConcept C2778449969 @default.
- W3157462034 hasConcept C41008148 @default.
- W3157462034 hasConcept C43214815 @default.
- W3157462034 hasConcept C50644808 @default.
- W3157462034 hasConcept C55493867 @default.
- W3157462034 hasConcept C62520636 @default.
- W3157462034 hasConcept C63479239 @default.
- W3157462034 hasConcept C78519656 @default.
- W3157462034 hasConcept C78600449 @default.
- W3157462034 hasConcept C81363708 @default.
- W3157462034 hasConcept C98045186 @default.
- W3157462034 hasConceptScore W3157462034C104317684 @default.