Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157480904> ?p ?o ?g. }
- W3157480904 endingPage "100035" @default.
- W3157480904 startingPage "100035" @default.
- W3157480904 abstract "We explore the short-run forecasting problem at horizons of 1, 5, 10, 15, and 20 days for three forecasting periods within one year for the Chinese stock index from April 16, 2010, the launch date of the index futures, to May 19, 2014 with daily closing prices. We study forecast performance of 51 individual time series models that are different variations of autoregressive models, (Bayesian) vector autoregressive models, and (Bayesian) vector error correction models, and 41 composite models based on different trimming strategies of these individual models. The composite models, including the previous best forecast, equal-weighted average, inverse mean squared error, bias adjusted mean, shrinkage, and odds matrix approaches, utilize the idea of model boosting to diversify against possible mis-specifications, breaks, and structural changes in individual models, and aim at more robust performance. Across all forecasting horizons and forecasting periods investigated, we arrive at a shrinkage composite model with the shrinkage parameter of 0.25 that is optimal based on the mean squared error. This result is robust against the choice of futures series used in individual models and the pre-processing of structural breaks in data. We also discuss empirical findings at a more granular level, including comparisons of individual models and those of composite forecasts. Our results should fulfill different forecasting users’ information needs for decision making and policy analysis. The empirical framework also has potential of being adapted to similar time series forecasting problems in different fields." @default.
- W3157480904 created "2021-05-10" @default.
- W3157480904 creator A5019106763 @default.
- W3157480904 creator A5023874610 @default.
- W3157480904 date "2021-09-01" @default.
- W3157480904 modified "2023-09-27" @default.
- W3157480904 title "Individual time series and composite forecasting of the Chinese stock index" @default.
- W3157480904 cites W1555341301 @default.
- W3157480904 cites W1558793738 @default.
- W3157480904 cites W1588163064 @default.
- W3157480904 cites W1605276600 @default.
- W3157480904 cites W1968750601 @default.
- W3157480904 cites W1977622453 @default.
- W3157480904 cites W1987587356 @default.
- W3157480904 cites W1995390392 @default.
- W3157480904 cites W2000842688 @default.
- W3157480904 cites W2003600193 @default.
- W3157480904 cites W2014305832 @default.
- W3157480904 cites W2019459021 @default.
- W3157480904 cites W2027530807 @default.
- W3157480904 cites W2029202224 @default.
- W3157480904 cites W2036830612 @default.
- W3157480904 cites W2041951664 @default.
- W3157480904 cites W2043945083 @default.
- W3157480904 cites W2048665112 @default.
- W3157480904 cites W2051023772 @default.
- W3157480904 cites W2052864776 @default.
- W3157480904 cites W2057182962 @default.
- W3157480904 cites W2065747393 @default.
- W3157480904 cites W2079503797 @default.
- W3157480904 cites W2092155530 @default.
- W3157480904 cites W2093780163 @default.
- W3157480904 cites W2095364399 @default.
- W3157480904 cites W2097580026 @default.
- W3157480904 cites W2106019945 @default.
- W3157480904 cites W2108280297 @default.
- W3157480904 cites W2108351401 @default.
- W3157480904 cites W2108731026 @default.
- W3157480904 cites W2114496006 @default.
- W3157480904 cites W2119291196 @default.
- W3157480904 cites W2130368616 @default.
- W3157480904 cites W2134575624 @default.
- W3157480904 cites W2145230985 @default.
- W3157480904 cites W2147190688 @default.
- W3157480904 cites W2152381591 @default.
- W3157480904 cites W2161020850 @default.
- W3157480904 cites W2168175751 @default.
- W3157480904 cites W2189220475 @default.
- W3157480904 cites W2270659678 @default.
- W3157480904 cites W2306303412 @default.
- W3157480904 cites W2412230368 @default.
- W3157480904 cites W2460483353 @default.
- W3157480904 cites W2549986406 @default.
- W3157480904 cites W2577917646 @default.
- W3157480904 cites W2592558403 @default.
- W3157480904 cites W2599150318 @default.
- W3157480904 cites W2606511996 @default.
- W3157480904 cites W2744234256 @default.
- W3157480904 cites W2765358053 @default.
- W3157480904 cites W2783861622 @default.
- W3157480904 cites W2790102142 @default.
- W3157480904 cites W2899384503 @default.
- W3157480904 cites W2945362021 @default.
- W3157480904 cites W2953673842 @default.
- W3157480904 cites W2960670636 @default.
- W3157480904 cites W3000215093 @default.
- W3157480904 cites W3021318637 @default.
- W3157480904 cites W3123639753 @default.
- W3157480904 cites W3125373846 @default.
- W3157480904 cites W3125654725 @default.
- W3157480904 cites W3126047495 @default.
- W3157480904 cites W3148991373 @default.
- W3157480904 cites W4239414618 @default.
- W3157480904 cites W4251363364 @default.
- W3157480904 cites W4252336336 @default.
- W3157480904 doi "https://doi.org/10.1016/j.mlwa.2021.100035" @default.
- W3157480904 hasPublicationYear "2021" @default.
- W3157480904 type Work @default.
- W3157480904 sameAs 3157480904 @default.
- W3157480904 citedByCount "24" @default.
- W3157480904 countsByYear W31574809042021 @default.
- W3157480904 countsByYear W31574809042022 @default.
- W3157480904 countsByYear W31574809042023 @default.
- W3157480904 crossrefType "journal-article" @default.
- W3157480904 hasAuthorship W3157480904A5019106763 @default.
- W3157480904 hasAuthorship W3157480904A5023874610 @default.
- W3157480904 hasBestOaLocation W31574809041 @default.
- W3157480904 hasConcept C105795698 @default.
- W3157480904 hasConcept C106159729 @default.
- W3157480904 hasConcept C106306483 @default.
- W3157480904 hasConcept C107673813 @default.
- W3157480904 hasConcept C122282355 @default.
- W3157480904 hasConcept C1297061 @default.
- W3157480904 hasConcept C136764020 @default.
- W3157480904 hasConcept C139945424 @default.
- W3157480904 hasConcept C149782125 @default.
- W3157480904 hasConcept C151406439 @default.
- W3157480904 hasConcept C159877910 @default.