Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157487677> ?p ?o ?g. }
- W3157487677 endingPage "65" @default.
- W3157487677 startingPage "54" @default.
- W3157487677 abstract "With the rapid development of sensor and computer technology, deep learning has received extensive attention in the field of fault detection with powerful nonlinear feature extraction capabilities. However, the feature extracted by deep learning contains different fault information volume. Fault detection performance would be affected by features with less fault information. Motivated by this, the deep high-dimensional features extracted from the deep belief network are analyzed, and an index for measuring fault information volume is proposed to select the deep highly-sensitive feature (DHSF) with a large amount of fault information volume as the feature to be detected. Based on DHSFs, Euclidean distance is used for fault detection, and the moving average window function is used to reduce burst noise interference and improve detection performance. Finally, a numerical case and Tennessee Eastman process demonstrate the advantage of the proposed method in fault detection results compared with other methods." @default.
- W3157487677 created "2021-05-10" @default.
- W3157487677 creator A5020501555 @default.
- W3157487677 creator A5030526515 @default.
- W3157487677 creator A5037335239 @default.
- W3157487677 creator A5052594325 @default.
- W3157487677 creator A5053865422 @default.
- W3157487677 creator A5076195925 @default.
- W3157487677 date "2021-06-01" @default.
- W3157487677 modified "2023-10-06" @default.
- W3157487677 title "Industrial process fault detection based on deep highly-sensitive feature capture" @default.
- W3157487677 cites W1984672166 @default.
- W3157487677 cites W1993694278 @default.
- W3157487677 cites W2006614180 @default.
- W3157487677 cites W2048407872 @default.
- W3157487677 cites W2060778779 @default.
- W3157487677 cites W2098751950 @default.
- W3157487677 cites W2100495367 @default.
- W3157487677 cites W2116064496 @default.
- W3157487677 cites W2130086376 @default.
- W3157487677 cites W2136922672 @default.
- W3157487677 cites W2155694896 @default.
- W3157487677 cites W2158958729 @default.
- W3157487677 cites W2184192902 @default.
- W3157487677 cites W2219903032 @default.
- W3157487677 cites W2258884143 @default.
- W3157487677 cites W2317595875 @default.
- W3157487677 cites W2441266639 @default.
- W3157487677 cites W2619381150 @default.
- W3157487677 cites W2767893839 @default.
- W3157487677 cites W2788805965 @default.
- W3157487677 cites W2895250764 @default.
- W3157487677 cites W2895407936 @default.
- W3157487677 cites W2903722520 @default.
- W3157487677 cites W2944544772 @default.
- W3157487677 cites W2962946162 @default.
- W3157487677 cites W2965875348 @default.
- W3157487677 cites W3016930809 @default.
- W3157487677 cites W3023883218 @default.
- W3157487677 cites W3132058218 @default.
- W3157487677 doi "https://doi.org/10.1016/j.jprocont.2021.04.003" @default.
- W3157487677 hasPublicationYear "2021" @default.
- W3157487677 type Work @default.
- W3157487677 sameAs 3157487677 @default.
- W3157487677 citedByCount "16" @default.
- W3157487677 countsByYear W31574876772021 @default.
- W3157487677 countsByYear W31574876772022 @default.
- W3157487677 countsByYear W31574876772023 @default.
- W3157487677 crossrefType "journal-article" @default.
- W3157487677 hasAuthorship W3157487677A5020501555 @default.
- W3157487677 hasAuthorship W3157487677A5030526515 @default.
- W3157487677 hasAuthorship W3157487677A5037335239 @default.
- W3157487677 hasAuthorship W3157487677A5052594325 @default.
- W3157487677 hasAuthorship W3157487677A5053865422 @default.
- W3157487677 hasAuthorship W3157487677A5076195925 @default.
- W3157487677 hasConcept C108583219 @default.
- W3157487677 hasConcept C111919701 @default.
- W3157487677 hasConcept C115961682 @default.
- W3157487677 hasConcept C120174047 @default.
- W3157487677 hasConcept C124101348 @default.
- W3157487677 hasConcept C127313418 @default.
- W3157487677 hasConcept C138885662 @default.
- W3157487677 hasConcept C152745839 @default.
- W3157487677 hasConcept C153180895 @default.
- W3157487677 hasConcept C154945302 @default.
- W3157487677 hasConcept C165205528 @default.
- W3157487677 hasConcept C172707124 @default.
- W3157487677 hasConcept C175551986 @default.
- W3157487677 hasConcept C202444582 @default.
- W3157487677 hasConcept C2776401178 @default.
- W3157487677 hasConcept C33923547 @default.
- W3157487677 hasConcept C41008148 @default.
- W3157487677 hasConcept C41895202 @default.
- W3157487677 hasConcept C52622490 @default.
- W3157487677 hasConcept C9652623 @default.
- W3157487677 hasConcept C97385483 @default.
- W3157487677 hasConcept C98045186 @default.
- W3157487677 hasConcept C99498987 @default.
- W3157487677 hasConceptScore W3157487677C108583219 @default.
- W3157487677 hasConceptScore W3157487677C111919701 @default.
- W3157487677 hasConceptScore W3157487677C115961682 @default.
- W3157487677 hasConceptScore W3157487677C120174047 @default.
- W3157487677 hasConceptScore W3157487677C124101348 @default.
- W3157487677 hasConceptScore W3157487677C127313418 @default.
- W3157487677 hasConceptScore W3157487677C138885662 @default.
- W3157487677 hasConceptScore W3157487677C152745839 @default.
- W3157487677 hasConceptScore W3157487677C153180895 @default.
- W3157487677 hasConceptScore W3157487677C154945302 @default.
- W3157487677 hasConceptScore W3157487677C165205528 @default.
- W3157487677 hasConceptScore W3157487677C172707124 @default.
- W3157487677 hasConceptScore W3157487677C175551986 @default.
- W3157487677 hasConceptScore W3157487677C202444582 @default.
- W3157487677 hasConceptScore W3157487677C2776401178 @default.
- W3157487677 hasConceptScore W3157487677C33923547 @default.
- W3157487677 hasConceptScore W3157487677C41008148 @default.
- W3157487677 hasConceptScore W3157487677C41895202 @default.
- W3157487677 hasConceptScore W3157487677C52622490 @default.
- W3157487677 hasConceptScore W3157487677C9652623 @default.