Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157489197> ?p ?o ?g. }
- W3157489197 endingPage "129937" @default.
- W3157489197 startingPage "129937" @default.
- W3157489197 abstract "Economical-driven counterfeit and inferior aged Chinese Baijiu has caused serious concern of publicity in China. In this study, a total of 167 authentic Chinese Baijiu samples with different vintages including 3 flavor types were carefully collected. Gas chromatography (GC) was used to determine main volatile components and proton nuclear magnetic resonance (1H NMR) spectroscopy was employed to obtain non-targeted fingerprints of Chinese Baijiu samples. Partial least squares regression (PLSR) models, which were confirmed by internal and external validation, were established for effectively identifying actual storage vintage of Chinese Baijiu with various brands, flavor types. Centering (Ctr), pareto scaling (Par), unit variance scaling (UV) data pretreatment methods, principal components (PCs), and three modified variable selection methods were proposed to successfully optimize the vintage model and effectively extract important vintage characteristic factors. This study demonstrated that NMR and GC combined with multivariate statistical analysis are effective tools for validating vintage authenticity of Chinese Baijiu." @default.
- W3157489197 created "2021-05-10" @default.
- W3157489197 creator A5003450330 @default.
- W3157489197 creator A5006651636 @default.
- W3157489197 creator A5011063752 @default.
- W3157489197 creator A5013178268 @default.
- W3157489197 creator A5014635750 @default.
- W3157489197 creator A5025156587 @default.
- W3157489197 creator A5027182008 @default.
- W3157489197 creator A5029560366 @default.
- W3157489197 creator A5037990992 @default.
- W3157489197 creator A5040401763 @default.
- W3157489197 creator A5043430437 @default.
- W3157489197 creator A5045772679 @default.
- W3157489197 creator A5053257302 @default.
- W3157489197 creator A5056356458 @default.
- W3157489197 creator A5060741317 @default.
- W3157489197 creator A5062981971 @default.
- W3157489197 creator A5075010715 @default.
- W3157489197 creator A5080249104 @default.
- W3157489197 creator A5086597537 @default.
- W3157489197 date "2021-10-01" @default.
- W3157489197 modified "2023-10-16" @default.
- W3157489197 title "Vintage analysis of Chinese Baijiu by GC and 1H NMR combined with multivariable analysis" @default.
- W3157489197 cites W1535455654 @default.
- W3157489197 cites W1988411517 @default.
- W3157489197 cites W1996195892 @default.
- W3157489197 cites W2004493539 @default.
- W3157489197 cites W2018618568 @default.
- W3157489197 cites W2036491364 @default.
- W3157489197 cites W2059855388 @default.
- W3157489197 cites W2070721918 @default.
- W3157489197 cites W2083524404 @default.
- W3157489197 cites W2095201632 @default.
- W3157489197 cites W2268660694 @default.
- W3157489197 cites W2316241088 @default.
- W3157489197 cites W2327450793 @default.
- W3157489197 cites W2546456398 @default.
- W3157489197 cites W2762096463 @default.
- W3157489197 cites W2765685548 @default.
- W3157489197 cites W2770134565 @default.
- W3157489197 cites W2801107635 @default.
- W3157489197 cites W2902372089 @default.
- W3157489197 cites W2910340411 @default.
- W3157489197 cites W2914155273 @default.
- W3157489197 cites W2990453882 @default.
- W3157489197 cites W3003297198 @default.
- W3157489197 cites W3036228854 @default.
- W3157489197 cites W3088909844 @default.
- W3157489197 cites W3092581422 @default.
- W3157489197 cites W574860155 @default.
- W3157489197 doi "https://doi.org/10.1016/j.foodchem.2021.129937" @default.
- W3157489197 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33989881" @default.
- W3157489197 hasPublicationYear "2021" @default.
- W3157489197 type Work @default.
- W3157489197 sameAs 3157489197 @default.
- W3157489197 citedByCount "9" @default.
- W3157489197 countsByYear W31574891972021 @default.
- W3157489197 countsByYear W31574891972022 @default.
- W3157489197 countsByYear W31574891972023 @default.
- W3157489197 crossrefType "journal-article" @default.
- W3157489197 hasAuthorship W3157489197A5003450330 @default.
- W3157489197 hasAuthorship W3157489197A5006651636 @default.
- W3157489197 hasAuthorship W3157489197A5011063752 @default.
- W3157489197 hasAuthorship W3157489197A5013178268 @default.
- W3157489197 hasAuthorship W3157489197A5014635750 @default.
- W3157489197 hasAuthorship W3157489197A5025156587 @default.
- W3157489197 hasAuthorship W3157489197A5027182008 @default.
- W3157489197 hasAuthorship W3157489197A5029560366 @default.
- W3157489197 hasAuthorship W3157489197A5037990992 @default.
- W3157489197 hasAuthorship W3157489197A5040401763 @default.
- W3157489197 hasAuthorship W3157489197A5043430437 @default.
- W3157489197 hasAuthorship W3157489197A5045772679 @default.
- W3157489197 hasAuthorship W3157489197A5053257302 @default.
- W3157489197 hasAuthorship W3157489197A5056356458 @default.
- W3157489197 hasAuthorship W3157489197A5060741317 @default.
- W3157489197 hasAuthorship W3157489197A5062981971 @default.
- W3157489197 hasAuthorship W3157489197A5075010715 @default.
- W3157489197 hasAuthorship W3157489197A5080249104 @default.
- W3157489197 hasAuthorship W3157489197A5086597537 @default.
- W3157489197 hasConcept C103319777 @default.
- W3157489197 hasConcept C105795698 @default.
- W3157489197 hasConcept C123890144 @default.
- W3157489197 hasConcept C151304367 @default.
- W3157489197 hasConcept C152877465 @default.
- W3157489197 hasConcept C161584116 @default.
- W3157489197 hasConcept C178790620 @default.
- W3157489197 hasConcept C185592680 @default.
- W3157489197 hasConcept C22354355 @default.
- W3157489197 hasConcept C27438332 @default.
- W3157489197 hasConcept C2780719635 @default.
- W3157489197 hasConcept C31903555 @default.
- W3157489197 hasConcept C33923547 @default.
- W3157489197 hasConcept C43617362 @default.
- W3157489197 hasConcept C55493867 @default.
- W3157489197 hasConceptScore W3157489197C103319777 @default.
- W3157489197 hasConceptScore W3157489197C105795698 @default.
- W3157489197 hasConceptScore W3157489197C123890144 @default.