Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157498475> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3157498475 endingPage "108326" @default.
- W3157498475 startingPage "108326" @default.
- W3157498475 abstract "• Preserving the time characteristics of source data. • Realizing the adaptive network architecture of the fault diagnosis model. • Showing the superior performance of accuracy and efficiency of fault diagnosis. With the development of digital information technology, nuclear energy systems are developing in the direction of intelligence and unmanned, which requires a higher demand for its safety, such as autonomous fault diagnosis. At present, the network structure model used in fault diagnosis usually needs professional design, which is time-consuming and labor-intensive, and the efficiency is low. To solve these problems, this paper proposes a data-driven adaptive fault diagnosis approach NSGAII-CNN. Firstly, the time-series data are mapped into two-dimensional images by Markov Transition Field, which preserves the time characteristics of the data and improves the fault diagnosis accuracy. Then, the NSGAII-CNN algorithm is proposed to realize the self-adaptive search of the network structure, which improves the construction speed of the fault diagnosis network structure model, thereby improving the diagnosis accuracy and efficiency. Finally, compared with the current three classical CNN architecture models designed by professionals, the methodology proposed in this paper has significant advantages in fault diagnosis and model structure construction. The proposed diagnosis method will provide operators with useful information and enhance the nuclear energy systems’ self-diagnostic capabilities." @default.
- W3157498475 created "2021-05-10" @default.
- W3157498475 creator A5056831260 @default.
- W3157498475 creator A5059037058 @default.
- W3157498475 creator A5062755510 @default.
- W3157498475 creator A5075367402 @default.
- W3157498475 creator A5076597960 @default.
- W3157498475 creator A5085738910 @default.
- W3157498475 date "2021-09-01" @default.
- W3157498475 modified "2023-10-02" @default.
- W3157498475 title "A data-driven adaptive fault diagnosis methodology for nuclear power systems based on NSGAII-CNN" @default.
- W3157498475 cites W1849277567 @default.
- W3157498475 cites W1980287119 @default.
- W3157498475 cites W1984044729 @default.
- W3157498475 cites W1995754647 @default.
- W3157498475 cites W1999645011 @default.
- W3157498475 cites W2116661285 @default.
- W3157498475 cites W2126105956 @default.
- W3157498475 cites W2127776238 @default.
- W3157498475 cites W2194490208 @default.
- W3157498475 cites W2426747136 @default.
- W3157498475 cites W2520359129 @default.
- W3157498475 cites W2588607706 @default.
- W3157498475 cites W2781540443 @default.
- W3157498475 cites W2877193671 @default.
- W3157498475 cites W2889860550 @default.
- W3157498475 cites W2891044424 @default.
- W3157498475 cites W2895097693 @default.
- W3157498475 cites W2897358436 @default.
- W3157498475 cites W2906578288 @default.
- W3157498475 cites W2944524737 @default.
- W3157498475 cites W2945306337 @default.
- W3157498475 cites W2969930993 @default.
- W3157498475 cites W2973424371 @default.
- W3157498475 cites W3011775786 @default.
- W3157498475 cites W3095869186 @default.
- W3157498475 cites W3104598318 @default.
- W3157498475 doi "https://doi.org/10.1016/j.anucene.2021.108326" @default.
- W3157498475 hasPublicationYear "2021" @default.
- W3157498475 type Work @default.
- W3157498475 sameAs 3157498475 @default.
- W3157498475 citedByCount "28" @default.
- W3157498475 countsByYear W31574984752021 @default.
- W3157498475 countsByYear W31574984752022 @default.
- W3157498475 countsByYear W31574984752023 @default.
- W3157498475 crossrefType "journal-article" @default.
- W3157498475 hasAuthorship W3157498475A5056831260 @default.
- W3157498475 hasAuthorship W3157498475A5059037058 @default.
- W3157498475 hasAuthorship W3157498475A5062755510 @default.
- W3157498475 hasAuthorship W3157498475A5075367402 @default.
- W3157498475 hasAuthorship W3157498475A5076597960 @default.
- W3157498475 hasAuthorship W3157498475A5085738910 @default.
- W3157498475 hasConcept C124101348 @default.
- W3157498475 hasConcept C127313418 @default.
- W3157498475 hasConcept C154945302 @default.
- W3157498475 hasConcept C165205528 @default.
- W3157498475 hasConcept C175551986 @default.
- W3157498475 hasConcept C41008148 @default.
- W3157498475 hasConceptScore W3157498475C124101348 @default.
- W3157498475 hasConceptScore W3157498475C127313418 @default.
- W3157498475 hasConceptScore W3157498475C154945302 @default.
- W3157498475 hasConceptScore W3157498475C165205528 @default.
- W3157498475 hasConceptScore W3157498475C175551986 @default.
- W3157498475 hasConceptScore W3157498475C41008148 @default.
- W3157498475 hasFunder F4320321001 @default.
- W3157498475 hasLocation W31574984751 @default.
- W3157498475 hasOpenAccess W3157498475 @default.
- W3157498475 hasPrimaryLocation W31574984751 @default.
- W3157498475 hasRelatedWork W1607960813 @default.
- W3157498475 hasRelatedWork W2347219288 @default.
- W3157498475 hasRelatedWork W2348097614 @default.
- W3157498475 hasRelatedWork W2350598552 @default.
- W3157498475 hasRelatedWork W2354822586 @default.
- W3157498475 hasRelatedWork W2358841807 @default.
- W3157498475 hasRelatedWork W2366221835 @default.
- W3157498475 hasRelatedWork W2590590073 @default.
- W3157498475 hasRelatedWork W2969723784 @default.
- W3157498475 hasRelatedWork W3149424243 @default.
- W3157498475 hasVolume "159" @default.
- W3157498475 isParatext "false" @default.
- W3157498475 isRetracted "false" @default.
- W3157498475 magId "3157498475" @default.
- W3157498475 workType "article" @default.