Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157679964> ?p ?o ?g. }
- W3157679964 abstract "Brain image analysis has advanced substantially in recent years with the proliferation of neuroimaging datasets acquired at different resolutions. While research on brain image super-resolution has undergone a rapid development in the recent years, brain graph super-resolution is still poorly investigated because of the complex nature of non-Euclidean graph data. In this paper, we propose the first-ever deep graph super-resolution (GSR) framework that attempts to automatically generate high-resolution (HR) brain graphs with N' nodes (i.e., anatomical regions of interest (ROIs)) from low-resolution (LR) graphs with N nodes where N < N'. First, we formalize our GSR problem as a node feature embedding learning task. Once the HR nodes' embeddings are learned, the pairwise connectivity strength between brain ROIs can be derived through an aggregation rule based on a novel Graph U-Net architecture. While typically the Graph U-Net is a node-focused architecture where graph embedding depends mainly on node attributes, we propose a graph-focused architecture where the node feature embedding is based on the graph topology. Second, inspired by graph spectral theory, we break the symmetry of the U-Net architecture by super-resolving the low-resolution brain graph structure and node content with a GSR layer and two graph convolutional network layers to further learn the node embeddings in the HR graph. Third, to handle the domain shift between the ground-truth and the predicted HR brain graphs, we incorporate adversarial regularization to align their respective distributions. Our proposed AGSR-Net framework outperformed its variants for predicting high-resolution functional brain graphs from low-resolution ones. Our AGSR-Net code is available on GitHub at this https URL." @default.
- W3157679964 created "2021-05-10" @default.
- W3157679964 creator A5048784346 @default.
- W3157679964 creator A5055722337 @default.
- W3157679964 date "2021-05-02" @default.
- W3157679964 modified "2023-09-27" @default.
- W3157679964 title "Brain Graph Super-Resolution Using Adversarial Graph Neural Network with Application to Functional Brain Connectivity" @default.
- W3157679964 cites W173308686 @default.
- W3157679964 cites W1745334888 @default.
- W3157679964 cites W1983208069 @default.
- W3157679964 cites W1999653836 @default.
- W3157679964 cites W2014022174 @default.
- W3157679964 cites W2027579212 @default.
- W3157679964 cites W2028138594 @default.
- W3157679964 cites W2046275336 @default.
- W3157679964 cites W2063404606 @default.
- W3157679964 cites W2085561705 @default.
- W3157679964 cites W2097982135 @default.
- W3157679964 cites W2116341502 @default.
- W3157679964 cites W2131181615 @default.
- W3157679964 cites W2204442912 @default.
- W3157679964 cites W2286929393 @default.
- W3157679964 cites W2295255854 @default.
- W3157679964 cites W2519887557 @default.
- W3157679964 cites W2522924304 @default.
- W3157679964 cites W2523714292 @default.
- W3157679964 cites W2588608138 @default.
- W3157679964 cites W2626271247 @default.
- W3157679964 cites W2753120040 @default.
- W3157679964 cites W2794107469 @default.
- W3157679964 cites W2805019413 @default.
- W3157679964 cites W2889639023 @default.
- W3157679964 cites W2896587207 @default.
- W3157679964 cites W2929319797 @default.
- W3157679964 cites W2945032471 @default.
- W3157679964 cites W2951451004 @default.
- W3157679964 cites W2953251974 @default.
- W3157679964 cites W2965514655 @default.
- W3157679964 cites W2978335131 @default.
- W3157679964 cites W2989249732 @default.
- W3157679964 cites W2997769980 @default.
- W3157679964 cites W3014467301 @default.
- W3157679964 cites W3096250972 @default.
- W3157679964 cites W3098848838 @default.
- W3157679964 cites W3099897211 @default.
- W3157679964 cites W761823288 @default.
- W3157679964 hasPublicationYear "2021" @default.
- W3157679964 type Work @default.
- W3157679964 sameAs 3157679964 @default.
- W3157679964 citedByCount "0" @default.
- W3157679964 crossrefType "posted-content" @default.
- W3157679964 hasAuthorship W3157679964A5048784346 @default.
- W3157679964 hasAuthorship W3157679964A5055722337 @default.
- W3157679964 hasConcept C108583219 @default.
- W3157679964 hasConcept C132525143 @default.
- W3157679964 hasConcept C153180895 @default.
- W3157679964 hasConcept C154945302 @default.
- W3157679964 hasConcept C157406716 @default.
- W3157679964 hasConcept C184898388 @default.
- W3157679964 hasConcept C203776342 @default.
- W3157679964 hasConcept C22149727 @default.
- W3157679964 hasConcept C41008148 @default.
- W3157679964 hasConcept C41608201 @default.
- W3157679964 hasConcept C75564084 @default.
- W3157679964 hasConcept C80444323 @default.
- W3157679964 hasConceptScore W3157679964C108583219 @default.
- W3157679964 hasConceptScore W3157679964C132525143 @default.
- W3157679964 hasConceptScore W3157679964C153180895 @default.
- W3157679964 hasConceptScore W3157679964C154945302 @default.
- W3157679964 hasConceptScore W3157679964C157406716 @default.
- W3157679964 hasConceptScore W3157679964C184898388 @default.
- W3157679964 hasConceptScore W3157679964C203776342 @default.
- W3157679964 hasConceptScore W3157679964C22149727 @default.
- W3157679964 hasConceptScore W3157679964C41008148 @default.
- W3157679964 hasConceptScore W3157679964C41608201 @default.
- W3157679964 hasConceptScore W3157679964C75564084 @default.
- W3157679964 hasConceptScore W3157679964C80444323 @default.
- W3157679964 hasLocation W31576799641 @default.
- W3157679964 hasOpenAccess W3157679964 @default.
- W3157679964 hasPrimaryLocation W31576799641 @default.
- W3157679964 hasRelatedWork W2788919350 @default.
- W3157679964 hasRelatedWork W2947148979 @default.
- W3157679964 hasRelatedWork W2952832237 @default.
- W3157679964 hasRelatedWork W2963458513 @default.
- W3157679964 hasRelatedWork W2977737675 @default.
- W3157679964 hasRelatedWork W2995345478 @default.
- W3157679964 hasRelatedWork W3000133884 @default.
- W3157679964 hasRelatedWork W3008778157 @default.
- W3157679964 hasRelatedWork W3012774908 @default.
- W3157679964 hasRelatedWork W3016165136 @default.
- W3157679964 hasRelatedWork W3037798305 @default.
- W3157679964 hasRelatedWork W3088380141 @default.
- W3157679964 hasRelatedWork W3093002101 @default.
- W3157679964 hasRelatedWork W3093492988 @default.
- W3157679964 hasRelatedWork W3103659988 @default.
- W3157679964 hasRelatedWork W3106496489 @default.
- W3157679964 hasRelatedWork W3111787430 @default.
- W3157679964 hasRelatedWork W3153535523 @default.
- W3157679964 hasRelatedWork W3200207395 @default.
- W3157679964 hasRelatedWork W3202695635 @default.