Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157682018> ?p ?o ?g. }
- W3157682018 abstract "Abstract Purpose To construct a deep convolutional neural network that generates virtual monochromatic images (VMIs) from single-energy computed tomography (SECT) images for improved pancreatic cancer imaging quality. Materials and methods Fifty patients with pancreatic cancer underwent a dual-energy CT simulation and VMIs at 77 and 60 keV were reconstructed. A 2D deep densely connected convolutional neural network was modeled to learn the relationship between the VMIs at 77 (input) and 60 keV (ground-truth). Subsequently, VMIs were generated for 20 patients from SECT images using the trained deep learning model. Results The contrast-to-noise ratio was significantly improved (p Conclusions The quality of the SECT image was significantly improved both objectively and subjectively using the proposed deep learning model for pancreatic tumors in radiotherapy." @default.
- W3157682018 created "2021-05-10" @default.
- W3157682018 creator A5012328207 @default.
- W3157682018 creator A5015153254 @default.
- W3157682018 creator A5036525621 @default.
- W3157682018 creator A5046906513 @default.
- W3157682018 creator A5051543374 @default.
- W3157682018 creator A5052814656 @default.
- W3157682018 creator A5054949663 @default.
- W3157682018 creator A5059478180 @default.
- W3157682018 creator A5061233046 @default.
- W3157682018 creator A5061346202 @default.
- W3157682018 creator A5063457545 @default.
- W3157682018 creator A5084361495 @default.
- W3157682018 date "2021-05-01" @default.
- W3157682018 modified "2023-09-24" @default.
- W3157682018 title "Improvement of image quality for pancreatic cancer using deep learning-generated virtual monochromatic images: Comparison with single-energy computed tomography" @default.
- W3157682018 cites W1885185971 @default.
- W3157682018 cites W1972037630 @default.
- W3157682018 cites W1999959695 @default.
- W3157682018 cites W2001749871 @default.
- W3157682018 cites W2016870154 @default.
- W3157682018 cites W2034924158 @default.
- W3157682018 cites W2051134301 @default.
- W3157682018 cites W2065526112 @default.
- W3157682018 cites W2081183739 @default.
- W3157682018 cites W2090562197 @default.
- W3157682018 cites W2101073067 @default.
- W3157682018 cites W2104942757 @default.
- W3157682018 cites W2127970337 @default.
- W3157682018 cites W2136281361 @default.
- W3157682018 cites W2196287118 @default.
- W3157682018 cites W2293166549 @default.
- W3157682018 cites W2536323247 @default.
- W3157682018 cites W2603013189 @default.
- W3157682018 cites W2734324756 @default.
- W3157682018 cites W2734591476 @default.
- W3157682018 cites W2776959291 @default.
- W3157682018 cites W2791193768 @default.
- W3157682018 cites W2795628108 @default.
- W3157682018 cites W2799444430 @default.
- W3157682018 cites W2887334542 @default.
- W3157682018 cites W2891820229 @default.
- W3157682018 cites W2898197178 @default.
- W3157682018 cites W2900237898 @default.
- W3157682018 cites W2906529963 @default.
- W3157682018 cites W2930161814 @default.
- W3157682018 cites W2943726039 @default.
- W3157682018 cites W3047414733 @default.
- W3157682018 cites W3087124312 @default.
- W3157682018 cites W3098848838 @default.
- W3157682018 cites W3101123465 @default.
- W3157682018 doi "https://doi.org/10.1016/j.ejmp.2021.03.035" @default.
- W3157682018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33940528" @default.
- W3157682018 hasPublicationYear "2021" @default.
- W3157682018 type Work @default.
- W3157682018 sameAs 3157682018 @default.
- W3157682018 citedByCount "2" @default.
- W3157682018 countsByYear W31576820182022 @default.
- W3157682018 crossrefType "journal-article" @default.
- W3157682018 hasAuthorship W3157682018A5012328207 @default.
- W3157682018 hasAuthorship W3157682018A5015153254 @default.
- W3157682018 hasAuthorship W3157682018A5036525621 @default.
- W3157682018 hasAuthorship W3157682018A5046906513 @default.
- W3157682018 hasAuthorship W3157682018A5051543374 @default.
- W3157682018 hasAuthorship W3157682018A5052814656 @default.
- W3157682018 hasAuthorship W3157682018A5054949663 @default.
- W3157682018 hasAuthorship W3157682018A5059478180 @default.
- W3157682018 hasAuthorship W3157682018A5061233046 @default.
- W3157682018 hasAuthorship W3157682018A5061346202 @default.
- W3157682018 hasAuthorship W3157682018A5063457545 @default.
- W3157682018 hasAuthorship W3157682018A5084361495 @default.
- W3157682018 hasConcept C108583219 @default.
- W3157682018 hasConcept C115961682 @default.
- W3157682018 hasConcept C120665830 @default.
- W3157682018 hasConcept C121332964 @default.
- W3157682018 hasConcept C121608353 @default.
- W3157682018 hasConcept C126322002 @default.
- W3157682018 hasConcept C153180895 @default.
- W3157682018 hasConcept C154945302 @default.
- W3157682018 hasConcept C186370098 @default.
- W3157682018 hasConcept C2780210213 @default.
- W3157682018 hasConcept C31972630 @default.
- W3157682018 hasConcept C40833965 @default.
- W3157682018 hasConcept C41008148 @default.
- W3157682018 hasConcept C55020928 @default.
- W3157682018 hasConcept C62520636 @default.
- W3157682018 hasConcept C71924100 @default.
- W3157682018 hasConcept C81363708 @default.
- W3157682018 hasConceptScore W3157682018C108583219 @default.
- W3157682018 hasConceptScore W3157682018C115961682 @default.
- W3157682018 hasConceptScore W3157682018C120665830 @default.
- W3157682018 hasConceptScore W3157682018C121332964 @default.
- W3157682018 hasConceptScore W3157682018C121608353 @default.
- W3157682018 hasConceptScore W3157682018C126322002 @default.
- W3157682018 hasConceptScore W3157682018C153180895 @default.
- W3157682018 hasConceptScore W3157682018C154945302 @default.
- W3157682018 hasConceptScore W3157682018C186370098 @default.
- W3157682018 hasConceptScore W3157682018C2780210213 @default.
- W3157682018 hasConceptScore W3157682018C31972630 @default.