Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157689641> ?p ?o ?g. }
- W3157689641 abstract "Neurological disorders dramatically impact patients of any age population, their families, and societies. Pediatrics are among vulnerable age populations who differently experience the devastating consequences of neurological conditions, such as attention-deficit hyperactivity disorders (ADHD), autism spectrum disorders (ASD), cerebral palsy, concussion, and epilepsy. System-level understanding of these neurological disorders, particularly from the brain networks' dynamic perspective, has led to the significant trend of recent scientific investigations. While a dramatic maturation in the network science application domain is evident, leading to a better understanding of neurological disorders, such rapid utilization for studying pediatric neurological disorders falls behind that of the adult population. Aside from the specific technological needs and constraints in studying neurological disorders in children, the concept of development introduces uncertainty and further complexity topping the existing neurologically driven processes caused by disorders. To unravel these complexities, indebted to the availability of high-dimensional data and computing capabilities, approaches based on machine learning have rapidly emerged a new trend to understand pathways better, accurately diagnose, and better manage the disorders. Deep learning has recently gained an ever-increasing role in the era of health and medical investigations. Thanks to its relatively more minor dependency on feature exploration and engineering, deep learning may overcome the challenges mentioned earlier in studying neurological disorders in children. The current scoping review aims to explore challenges concerning pediatric brain development studies under the constraints of neurological disorders and offer an insight into the potential role of deep learning methodology on such a task with varying and uncertain nature. Along with pinpointing recent advancements, possible research directions are highlighted where deep learning approaches can assist in computationally targeting neurological disorder-related processes and translating them into windows of opportunities for interventions in diagnosis, treatment, and management of neurological disorders in children." @default.
- W3157689641 created "2021-05-10" @default.
- W3157689641 creator A5090321420 @default.
- W3157689641 date "2021-05-05" @default.
- W3157689641 modified "2023-09-27" @default.
- W3157689641 title "Can Deep Learning Hit a Moving Target? A Scoping Review of Its Role to Study Neurological Disorders in Children" @default.
- W3157689641 cites W1495994922 @default.
- W3157689641 cites W1780888576 @default.
- W3157689641 cites W1964802316 @default.
- W3157689641 cites W1982321167 @default.
- W3157689641 cites W1982835954 @default.
- W3157689641 cites W1994794974 @default.
- W3157689641 cites W2027419157 @default.
- W3157689641 cites W2041464101 @default.
- W3157689641 cites W2053850015 @default.
- W3157689641 cites W2067576490 @default.
- W3157689641 cites W2076063813 @default.
- W3157689641 cites W2082526668 @default.
- W3157689641 cites W2083046441 @default.
- W3157689641 cites W2103212315 @default.
- W3157689641 cites W2103681669 @default.
- W3157689641 cites W2108535502 @default.
- W3157689641 cites W2115599658 @default.
- W3157689641 cites W2117140276 @default.
- W3157689641 cites W2133221265 @default.
- W3157689641 cites W2135191640 @default.
- W3157689641 cites W2151045431 @default.
- W3157689641 cites W2162407586 @default.
- W3157689641 cites W2209795071 @default.
- W3157689641 cites W2522344608 @default.
- W3157689641 cites W2526511911 @default.
- W3157689641 cites W2588003167 @default.
- W3157689641 cites W2610332124 @default.
- W3157689641 cites W2742086638 @default.
- W3157689641 cites W2789863594 @default.
- W3157689641 cites W2795691199 @default.
- W3157689641 cites W2796271887 @default.
- W3157689641 cites W2799875237 @default.
- W3157689641 cites W2802789529 @default.
- W3157689641 cites W2804692111 @default.
- W3157689641 cites W2810456965 @default.
- W3157689641 cites W2901427516 @default.
- W3157689641 cites W2910639586 @default.
- W3157689641 cites W2912989038 @default.
- W3157689641 cites W2916671809 @default.
- W3157689641 cites W2919115771 @default.
- W3157689641 cites W2920773390 @default.
- W3157689641 cites W2920884867 @default.
- W3157689641 cites W2922701384 @default.
- W3157689641 cites W2931509017 @default.
- W3157689641 cites W2941891803 @default.
- W3157689641 cites W2945727247 @default.
- W3157689641 cites W2952825522 @default.
- W3157689641 cites W2954093922 @default.
- W3157689641 cites W2962984603 @default.
- W3157689641 cites W2964657045 @default.
- W3157689641 cites W2965481926 @default.
- W3157689641 cites W2968778218 @default.
- W3157689641 cites W2969412643 @default.
- W3157689641 cites W2972837029 @default.
- W3157689641 cites W2977526582 @default.
- W3157689641 cites W2977883299 @default.
- W3157689641 cites W2982209755 @default.
- W3157689641 cites W2990430870 @default.
- W3157689641 cites W2991373402 @default.
- W3157689641 cites W2999521969 @default.
- W3157689641 cites W3010369603 @default.
- W3157689641 cites W3016807694 @default.
- W3157689641 cites W3019180786 @default.
- W3157689641 cites W3045882178 @default.
- W3157689641 cites W3049752087 @default.
- W3157689641 cites W308431700 @default.
- W3157689641 cites W3092100795 @default.
- W3157689641 cites W3094548069 @default.
- W3157689641 cites W3101612813 @default.
- W3157689641 cites W3115552777 @default.
- W3157689641 cites W4241074797 @default.
- W3157689641 doi "https://doi.org/10.3389/fncom.2021.670489" @default.
- W3157689641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8131543" @default.
- W3157689641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34025380" @default.
- W3157689641 hasPublicationYear "2021" @default.
- W3157689641 type Work @default.
- W3157689641 sameAs 3157689641 @default.
- W3157689641 citedByCount "2" @default.
- W3157689641 countsByYear W31576896412022 @default.
- W3157689641 countsByYear W31576896412023 @default.
- W3157689641 crossrefType "journal-article" @default.
- W3157689641 hasAuthorship W3157689641A5090321420 @default.
- W3157689641 hasBestOaLocation W31576896411 @default.
- W3157689641 hasConcept C118552586 @default.
- W3157689641 hasConcept C142724271 @default.
- W3157689641 hasConcept C15744967 @default.
- W3157689641 hasConcept C169760540 @default.
- W3157689641 hasConcept C190385971 @default.
- W3157689641 hasConcept C205778803 @default.
- W3157689641 hasConcept C2778261627 @default.
- W3157689641 hasConcept C2778426673 @default.
- W3157689641 hasConcept C2779134260 @default.
- W3157689641 hasConcept C2779421357 @default.
- W3157689641 hasConcept C2780783007 @default.