Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157769782> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3157769782 abstract "Background: Clinical diagnosis of craniofacial anomalies requires expert knowledge. Recent studies have shown that artificial intelligence (AI) based facial analysis can match the diagnostic capabilities of expert clinicians in syndrome identification. In general, these systems use 2D images and analyse texture and colour. While these are powerful tools for photographic analysis, they are not suitable for use with medical imaging modalities such as ultrasound, MRI or CT, and are unable to take shape information into consideration when making a diagnostic prediction. 3D morphable models (3DMMs), and their recently proposed successors, mesh autoencoders, analyse surface topography rather than texture enabling analysis from photography and all common medical imaging modalities, and present an alternative to image-based analysis.Methods: We present a craniofacial analysis framework for syndrome identification using Convolutional Mesh Autoencoders (CMAs). The models were trained using 3D photographs of the general population (LSFM and LYHM), computed tomography data (CT) scans from healthy infants and patients with 3 genetically distinct craniofacial syndromes (Muenke, Crouzon, Apert).Findings: Machine diagnosis outperformed expert clinical diagnosis with an accuracy of 99.98%, sensitivity of 99.95% and specificity of 100%. The diagnostic precision of this technique supports its potential inclusion in clinical decision support systems. Its reliance on 3D topography characterisation makes it suitable for AI assisted diagnosis in medical imaging as well as photographic analysis in the clinical setting.Interpretation: Our study demonstrates the use of 3D convolutional mesh autoencoders for the diagnosis of syndromic craniosynostosis. The topological nature of the tool presents opportunities for this method to be applied as a diagnostic tool across a number of 3D imaging modalities.Funding: This work has been funded by Great Ormond Street Hospital for Children Charity (Grant No. 12SG15), the Engineering and Physical Sciences Research Council (EP/N02124X/1) and the European Research Council (ERC-2017-StG-757923).Declaration of Interests: A.P. and S.Z. currently work with Huawei Technologies Co., Ltd. They were with Imperial College London and University College London during the experiments, respectively. The other authors declare no competing interests.Ethics Approval Statement: Patient data for this study were retrospectively retrieved from electronic medical records after receiving approval from the Institutional Review Board: Great Ormond Street Hospital (R&D no. 14DS25)." @default.
- W3157769782 created "2021-05-10" @default.
- W3157769782 creator A5002732899 @default.
- W3157769782 creator A5013632877 @default.
- W3157769782 creator A5015266478 @default.
- W3157769782 creator A5025848519 @default.
- W3157769782 creator A5028475719 @default.
- W3157769782 creator A5047197192 @default.
- W3157769782 creator A5058260643 @default.
- W3157769782 creator A5060021610 @default.
- W3157769782 creator A5063380191 @default.
- W3157769782 creator A5063662230 @default.
- W3157769782 creator A5080553022 @default.
- W3157769782 date "2021-01-01" @default.
- W3157769782 modified "2023-09-27" @default.
- W3157769782 title "Craniofacial Syndrome Identification Using Convolutional Mesh Autoencoders" @default.
- W3157769782 doi "https://doi.org/10.2139/ssrn.3795325" @default.
- W3157769782 hasPublicationYear "2021" @default.
- W3157769782 type Work @default.
- W3157769782 sameAs 3157769782 @default.
- W3157769782 citedByCount "1" @default.
- W3157769782 countsByYear W31577697822022 @default.
- W3157769782 crossrefType "journal-article" @default.
- W3157769782 hasAuthorship W3157769782A5002732899 @default.
- W3157769782 hasAuthorship W3157769782A5013632877 @default.
- W3157769782 hasAuthorship W3157769782A5015266478 @default.
- W3157769782 hasAuthorship W3157769782A5025848519 @default.
- W3157769782 hasAuthorship W3157769782A5028475719 @default.
- W3157769782 hasAuthorship W3157769782A5047197192 @default.
- W3157769782 hasAuthorship W3157769782A5058260643 @default.
- W3157769782 hasAuthorship W3157769782A5060021610 @default.
- W3157769782 hasAuthorship W3157769782A5063380191 @default.
- W3157769782 hasAuthorship W3157769782A5063662230 @default.
- W3157769782 hasAuthorship W3157769782A5080553022 @default.
- W3157769782 hasBestOaLocation W31577697822 @default.
- W3157769782 hasConcept C116834253 @default.
- W3157769782 hasConcept C118552586 @default.
- W3157769782 hasConcept C153180895 @default.
- W3157769782 hasConcept C154945302 @default.
- W3157769782 hasConcept C2781245598 @default.
- W3157769782 hasConcept C29694066 @default.
- W3157769782 hasConcept C41008148 @default.
- W3157769782 hasConcept C59822182 @default.
- W3157769782 hasConcept C71924100 @default.
- W3157769782 hasConcept C81363708 @default.
- W3157769782 hasConcept C86803240 @default.
- W3157769782 hasConceptScore W3157769782C116834253 @default.
- W3157769782 hasConceptScore W3157769782C118552586 @default.
- W3157769782 hasConceptScore W3157769782C153180895 @default.
- W3157769782 hasConceptScore W3157769782C154945302 @default.
- W3157769782 hasConceptScore W3157769782C2781245598 @default.
- W3157769782 hasConceptScore W3157769782C29694066 @default.
- W3157769782 hasConceptScore W3157769782C41008148 @default.
- W3157769782 hasConceptScore W3157769782C59822182 @default.
- W3157769782 hasConceptScore W3157769782C71924100 @default.
- W3157769782 hasConceptScore W3157769782C81363708 @default.
- W3157769782 hasConceptScore W3157769782C86803240 @default.
- W3157769782 hasLocation W31577697821 @default.
- W3157769782 hasLocation W31577697822 @default.
- W3157769782 hasLocation W31577697823 @default.
- W3157769782 hasLocation W31577697824 @default.
- W3157769782 hasOpenAccess W3157769782 @default.
- W3157769782 hasPrimaryLocation W31577697821 @default.
- W3157769782 hasRelatedWork W2175746458 @default.
- W3157769782 hasRelatedWork W2732542196 @default.
- W3157769782 hasRelatedWork W2738221750 @default.
- W3157769782 hasRelatedWork W2758063741 @default.
- W3157769782 hasRelatedWork W2760085659 @default.
- W3157769782 hasRelatedWork W2883200793 @default.
- W3157769782 hasRelatedWork W2912288872 @default.
- W3157769782 hasRelatedWork W2940661641 @default.
- W3157769782 hasRelatedWork W3012978760 @default.
- W3157769782 hasRelatedWork W3093612317 @default.
- W3157769782 isParatext "false" @default.
- W3157769782 isRetracted "false" @default.
- W3157769782 magId "3157769782" @default.
- W3157769782 workType "article" @default.