Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157795948> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3157795948 endingPage "50" @default.
- W3157795948 startingPage "50" @default.
- W3157795948 abstract "For a tribological experiment involving a steel shaft sliding in a self-lubricating bronze bearing, a semi-supervised machine learning method for the classification of the state of operation is proposed. During the translatory oscillating motion, the system may undergo different states of operation from normal to critical, showing self-recovering behaviour. A Random Forest classifier was trained on individual cycles from the lateral force data from four distinct experimental runs in order to distinguish between four states of operation. The labelling of the individual cycles proved to be crucial for a high prediction accuracy of the trained RF classifier. The proposed semi-supervised approach allows choosing within a range between automatically generated labels and full manual labelling by an expert user. The algorithm was at the current state used for ex post classification of the state of operation. Considering the results from the ex post analysis and providing a sufficiently sized training dataset, online classification of the state of operation of a system will be possible. This will allow taking active countermeasures to stabilise the system or to terminate the experiment before major damage occurs." @default.
- W3157795948 created "2021-05-10" @default.
- W3157795948 creator A5012265593 @default.
- W3157795948 creator A5050427881 @default.
- W3157795948 creator A5051377295 @default.
- W3157795948 creator A5068389506 @default.
- W3157795948 creator A5075677544 @default.
- W3157795948 creator A5088207634 @default.
- W3157795948 date "2021-05-04" @default.
- W3157795948 modified "2023-10-17" @default.
- W3157795948 title "Semi-Supervised Classification of the State of Operation in Self-Lubricating Journal Bearings Using a Random Forest Classifier" @default.
- W3157795948 cites W1449300207 @default.
- W3157795948 cites W2109606373 @default.
- W3157795948 cites W2122482402 @default.
- W3157795948 cites W2158698691 @default.
- W3157795948 cites W2267357626 @default.
- W3157795948 cites W2472803348 @default.
- W3157795948 cites W2558094457 @default.
- W3157795948 cites W2765691677 @default.
- W3157795948 cites W2770233526 @default.
- W3157795948 cites W2771106953 @default.
- W3157795948 cites W2789401417 @default.
- W3157795948 cites W2800429791 @default.
- W3157795948 cites W2802415864 @default.
- W3157795948 cites W2802643674 @default.
- W3157795948 cites W2886643269 @default.
- W3157795948 cites W2892554003 @default.
- W3157795948 cites W2903801157 @default.
- W3157795948 cites W2905669406 @default.
- W3157795948 cites W2911964244 @default.
- W3157795948 cites W2947945101 @default.
- W3157795948 cites W3009077328 @default.
- W3157795948 cites W3037565425 @default.
- W3157795948 cites W3048603960 @default.
- W3157795948 cites W3083255157 @default.
- W3157795948 cites W3092286667 @default.
- W3157795948 cites W3092832615 @default.
- W3157795948 cites W3099878876 @default.
- W3157795948 cites W3106869630 @default.
- W3157795948 cites W3108914650 @default.
- W3157795948 cites W3111200734 @default.
- W3157795948 cites W3112955596 @default.
- W3157795948 cites W3113008830 @default.
- W3157795948 cites W3113471983 @default.
- W3157795948 cites W3124549644 @default.
- W3157795948 cites W3131785880 @default.
- W3157795948 cites W4212883601 @default.
- W3157795948 doi "https://doi.org/10.3390/lubricants9050050" @default.
- W3157795948 hasPublicationYear "2021" @default.
- W3157795948 type Work @default.
- W3157795948 sameAs 3157795948 @default.
- W3157795948 citedByCount "10" @default.
- W3157795948 countsByYear W31577959482021 @default.
- W3157795948 countsByYear W31577959482022 @default.
- W3157795948 countsByYear W31577959482023 @default.
- W3157795948 crossrefType "journal-article" @default.
- W3157795948 hasAuthorship W3157795948A5012265593 @default.
- W3157795948 hasAuthorship W3157795948A5050427881 @default.
- W3157795948 hasAuthorship W3157795948A5051377295 @default.
- W3157795948 hasAuthorship W3157795948A5068389506 @default.
- W3157795948 hasAuthorship W3157795948A5075677544 @default.
- W3157795948 hasAuthorship W3157795948A5088207634 @default.
- W3157795948 hasBestOaLocation W31577959481 @default.
- W3157795948 hasConcept C119857082 @default.
- W3157795948 hasConcept C153180895 @default.
- W3157795948 hasConcept C154945302 @default.
- W3157795948 hasConcept C169258074 @default.
- W3157795948 hasConcept C41008148 @default.
- W3157795948 hasConcept C51632099 @default.
- W3157795948 hasConcept C95623464 @default.
- W3157795948 hasConceptScore W3157795948C119857082 @default.
- W3157795948 hasConceptScore W3157795948C153180895 @default.
- W3157795948 hasConceptScore W3157795948C154945302 @default.
- W3157795948 hasConceptScore W3157795948C169258074 @default.
- W3157795948 hasConceptScore W3157795948C41008148 @default.
- W3157795948 hasConceptScore W3157795948C51632099 @default.
- W3157795948 hasConceptScore W3157795948C95623464 @default.
- W3157795948 hasIssue "5" @default.
- W3157795948 hasLocation W31577959481 @default.
- W3157795948 hasLocation W31577959482 @default.
- W3157795948 hasOpenAccess W3157795948 @default.
- W3157795948 hasPrimaryLocation W31577959481 @default.
- W3157795948 hasRelatedWork W2563096758 @default.
- W3157795948 hasRelatedWork W2911455822 @default.
- W3157795948 hasRelatedWork W2964383635 @default.
- W3157795948 hasRelatedWork W3174196512 @default.
- W3157795948 hasRelatedWork W3211546796 @default.
- W3157795948 hasRelatedWork W4281616679 @default.
- W3157795948 hasRelatedWork W4293525103 @default.
- W3157795948 hasRelatedWork W4308191010 @default.
- W3157795948 hasRelatedWork W4318350883 @default.
- W3157795948 hasRelatedWork W4323021782 @default.
- W3157795948 hasVolume "9" @default.
- W3157795948 isParatext "false" @default.
- W3157795948 isRetracted "false" @default.
- W3157795948 magId "3157795948" @default.
- W3157795948 workType "article" @default.