Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157800205> ?p ?o ?g. }
- W3157800205 endingPage "106397" @default.
- W3157800205 startingPage "106397" @default.
- W3157800205 abstract "It was reasoned that, incorporating reproductive technologies and genomic selection in the current dairy goats breeding programme would generate higher response to selection compared to use of natural mating in the current conventional breeding programme. This premise was tested by deterministic simulation approach and compared to the current breeding programme where natural mating and conventional breeding programme is used in the tropics. Two breeding schemes with three breeding strategies were simulated. The first scheme was conventional breeding scheme (CS) which represented the current dairy goat-breeding programme in the tropics. An alternative scheme was genomic breeding scheme (GS). Each scheme was evaluated with three mating strategies. They include; conventional scheme using natural mating (CNM), AI-Liquid semen (CLS) and AI-Frozen semen (CFS), and genomic scheme using natural mating (GNM), AI-Liquid semen (GLS) and AI-Frozen semen (GFS) strategies, with 5% of the total population in the nucleus and 95 % in the commercial. The current study found that CLS and GLS were superior compared to CFS and GFS, and CNM and GNM strategies in terms of annual genetic gain, returns and profit per doe per year. The CLS realised additional Kenya Shillings (KES) 3.00 and 3.61, 151.31 and KES 46.72, 148.89 and 47.81, in genetic gain, returns and profitability compared to CNM and CFS, respectively. The CLS incurred low costs KES 23.38 compared to CFS with KES 24.47 but higher than CNM with KES 20.96. On the other hand, CFS strategy has generated additional returns KES 104.59 and profit KES 101.08 but lower by KES 0.61 in genetic gain compared to CNM strategy. Implementation of genomic scheme has generated additional improvement across the three mating strategies in all the parameters measured compared to the conventional scheme. The GS realised additional KES 11.54, 10.80 and 10.21 in genetic gain, KES 161.30, 183.48 and 175.90 returns, and 136.30, 158.48 and 150.90 profit in the GNM, GLS and GFS, respectively, compared to those realised in CNM, CLS and CFS. Genetic gain increased with increased nucleus population size up to 15 % and thereafter, it declines in both CS and GS schemes with optimal nucleus size ranging between 14 % and 16 %. In conclusion, the current study demonstrated that adoption of reproductive technologies such as AI would optimize response to selection in dairy goat breeding programs in the tropics. The response to selection in such breeding programmes could be maximized in combination with genomic selection." @default.
- W3157800205 created "2021-05-10" @default.
- W3157800205 creator A5005361760 @default.
- W3157800205 creator A5042220680 @default.
- W3157800205 creator A5064909412 @default.
- W3157800205 creator A5072996754 @default.
- W3157800205 date "2021-07-01" @default.
- W3157800205 modified "2023-10-15" @default.
- W3157800205 title "Improved response to selection in dairy goat breeding programme through reproductive technology and genomic selection in the tropics" @default.
- W3157800205 cites W1525668218 @default.
- W3157800205 cites W1893631050 @default.
- W3157800205 cites W1965974359 @default.
- W3157800205 cites W1968690628 @default.
- W3157800205 cites W1978541651 @default.
- W3157800205 cites W1990264261 @default.
- W3157800205 cites W2017342831 @default.
- W3157800205 cites W2018494362 @default.
- W3157800205 cites W2050322164 @default.
- W3157800205 cites W2053211026 @default.
- W3157800205 cites W2055126589 @default.
- W3157800205 cites W2055146160 @default.
- W3157800205 cites W2063033862 @default.
- W3157800205 cites W2073413340 @default.
- W3157800205 cites W2074437366 @default.
- W3157800205 cites W2094526538 @default.
- W3157800205 cites W2094836723 @default.
- W3157800205 cites W2103566275 @default.
- W3157800205 cites W2106418989 @default.
- W3157800205 cites W2108583185 @default.
- W3157800205 cites W2110701545 @default.
- W3157800205 cites W2120387644 @default.
- W3157800205 cites W2121090358 @default.
- W3157800205 cites W2131080650 @default.
- W3157800205 cites W2133294534 @default.
- W3157800205 cites W2135661628 @default.
- W3157800205 cites W2140330844 @default.
- W3157800205 cites W2145647386 @default.
- W3157800205 cites W2151997536 @default.
- W3157800205 cites W2154481583 @default.
- W3157800205 cites W2156449409 @default.
- W3157800205 cites W2190416486 @default.
- W3157800205 cites W2214525652 @default.
- W3157800205 cites W2301532963 @default.
- W3157800205 cites W2320941423 @default.
- W3157800205 cites W2520490766 @default.
- W3157800205 cites W2522561493 @default.
- W3157800205 cites W2548786143 @default.
- W3157800205 cites W2567040002 @default.
- W3157800205 cites W2589012190 @default.
- W3157800205 cites W2617246639 @default.
- W3157800205 cites W2736754874 @default.
- W3157800205 cites W2755372456 @default.
- W3157800205 cites W2802978918 @default.
- W3157800205 cites W2886618907 @default.
- W3157800205 cites W2902513536 @default.
- W3157800205 cites W2915301594 @default.
- W3157800205 cites W2954839485 @default.
- W3157800205 cites W2955485424 @default.
- W3157800205 cites W2963160159 @default.
- W3157800205 cites W3028964999 @default.
- W3157800205 cites W3046352242 @default.
- W3157800205 cites W3082358562 @default.
- W3157800205 doi "https://doi.org/10.1016/j.smallrumres.2021.106397" @default.
- W3157800205 hasPublicationYear "2021" @default.
- W3157800205 type Work @default.
- W3157800205 sameAs 3157800205 @default.
- W3157800205 citedByCount "2" @default.
- W3157800205 countsByYear W31578002052022 @default.
- W3157800205 countsByYear W31578002052023 @default.
- W3157800205 crossrefType "journal-article" @default.
- W3157800205 hasAuthorship W3157800205A5005361760 @default.
- W3157800205 hasAuthorship W3157800205A5042220680 @default.
- W3157800205 hasAuthorship W3157800205A5064909412 @default.
- W3157800205 hasAuthorship W3157800205A5072996754 @default.
- W3157800205 hasBestOaLocation W31578002051 @default.
- W3157800205 hasConcept C104317684 @default.
- W3157800205 hasConcept C117376503 @default.
- W3157800205 hasConcept C119767625 @default.
- W3157800205 hasConcept C135763542 @default.
- W3157800205 hasConcept C144024400 @default.
- W3157800205 hasConcept C149923435 @default.
- W3157800205 hasConcept C150903083 @default.
- W3157800205 hasConcept C153209595 @default.
- W3157800205 hasConcept C154945302 @default.
- W3157800205 hasConcept C18903297 @default.
- W3157800205 hasConcept C190729725 @default.
- W3157800205 hasConcept C2778093475 @default.
- W3157800205 hasConcept C2778890363 @default.
- W3157800205 hasConcept C2908647359 @default.
- W3157800205 hasConcept C2992444039 @default.
- W3157800205 hasConcept C41008148 @default.
- W3157800205 hasConcept C50660011 @default.
- W3157800205 hasConcept C514575182 @default.
- W3157800205 hasConcept C54355233 @default.
- W3157800205 hasConcept C68873052 @default.
- W3157800205 hasConcept C71924100 @default.
- W3157800205 hasConcept C81917197 @default.
- W3157800205 hasConcept C86803240 @default.