Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157917721> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3157917721 abstract "The enormous number of research papers on the Web motivated researchers to propose models that could assist users with personalized citation recommendations. Recently, Citation Recommendation (CR) models applying Network Representation Learning (NRL) techniques have revealed promising outcomes. Still, current NRL-based models are limited in terms of employing salient factors and relations between the objects of Multi-view Heterogeneous Networks (MHNs), hence, they failed to capture researchers' preferences. Besides, these models cannot exploit heterogeneity in the networks and hence suffer from the sparsity problems. To overcome these problems, we propose GCR-MHNE model, which employs a Multi-View Heterogeneous Network Embedding method to generate personalized recommendations. Specifically, it exploits semantic relations between papers based on citations, venue information, topical relevance, authors' information, and relevant labels to learn their vector representations. Moreover, the model captures the most influential features related to each semantic relation employing an attention mechanism. Compared to its counterparts, GCR-MHNE brings 6% and 7% improvements using the openly-available datasets in terms of Mean Average Precision and Normalized Discounted Cumulative Gain metrics, respectively. Furthermore, the proposed model outperforms its counterparts when the networks are sparse." @default.
- W3157917721 created "2021-05-10" @default.
- W3157917721 creator A5014126767 @default.
- W3157917721 creator A5018267985 @default.
- W3157917721 creator A5022377161 @default.
- W3157917721 creator A5029397446 @default.
- W3157917721 creator A5034606659 @default.
- W3157917721 creator A5064650322 @default.
- W3157917721 date "2021-03-24" @default.
- W3157917721 modified "2023-09-23" @default.
- W3157917721 title "Global Citation Recommendation employing Multi-view Heterogeneous Network Embedding" @default.
- W3157917721 cites W1480013115 @default.
- W3157917721 cites W2054428703 @default.
- W3157917721 cites W2135790056 @default.
- W3157917721 cites W2163089586 @default.
- W3157917721 cites W2341468445 @default.
- W3157917721 cites W2344535803 @default.
- W3157917721 cites W2510317721 @default.
- W3157917721 cites W2612281806 @default.
- W3157917721 cites W2740900805 @default.
- W3157917721 cites W2743104969 @default.
- W3157917721 cites W2765431210 @default.
- W3157917721 cites W2787905871 @default.
- W3157917721 cites W2789032889 @default.
- W3157917721 cites W2802966978 @default.
- W3157917721 cites W2905586594 @default.
- W3157917721 cites W2945266622 @default.
- W3157917721 cites W2965277537 @default.
- W3157917721 cites W2982667460 @default.
- W3157917721 cites W3043016077 @default.
- W3157917721 cites W3044384472 @default.
- W3157917721 cites W3089538137 @default.
- W3157917721 doi "https://doi.org/10.1109/ciss50987.2021.9400311" @default.
- W3157917721 hasPublicationYear "2021" @default.
- W3157917721 type Work @default.
- W3157917721 sameAs 3157917721 @default.
- W3157917721 citedByCount "2" @default.
- W3157917721 countsByYear W31579177212021 @default.
- W3157917721 countsByYear W31579177212022 @default.
- W3157917721 crossrefType "proceedings-article" @default.
- W3157917721 hasAuthorship W3157917721A5014126767 @default.
- W3157917721 hasAuthorship W3157917721A5018267985 @default.
- W3157917721 hasAuthorship W3157917721A5022377161 @default.
- W3157917721 hasAuthorship W3157917721A5029397446 @default.
- W3157917721 hasAuthorship W3157917721A5034606659 @default.
- W3157917721 hasAuthorship W3157917721A5064650322 @default.
- W3157917721 hasConcept C136764020 @default.
- W3157917721 hasConcept C154945302 @default.
- W3157917721 hasConcept C2778805511 @default.
- W3157917721 hasConcept C41008148 @default.
- W3157917721 hasConcept C41608201 @default.
- W3157917721 hasConceptScore W3157917721C136764020 @default.
- W3157917721 hasConceptScore W3157917721C154945302 @default.
- W3157917721 hasConceptScore W3157917721C2778805511 @default.
- W3157917721 hasConceptScore W3157917721C41008148 @default.
- W3157917721 hasConceptScore W3157917721C41608201 @default.
- W3157917721 hasLocation W31579177211 @default.
- W3157917721 hasOpenAccess W3157917721 @default.
- W3157917721 hasPrimaryLocation W31579177211 @default.
- W3157917721 hasRelatedWork W1503053695 @default.
- W3157917721 hasRelatedWork W2541017027 @default.
- W3157917721 hasRelatedWork W2562338087 @default.
- W3157917721 hasRelatedWork W2748952813 @default.
- W3157917721 hasRelatedWork W2806860970 @default.
- W3157917721 hasRelatedWork W2892722436 @default.
- W3157917721 hasRelatedWork W2903795135 @default.
- W3157917721 hasRelatedWork W3096054746 @default.
- W3157917721 hasRelatedWork W4285211716 @default.
- W3157917721 hasRelatedWork W4285224442 @default.
- W3157917721 isParatext "false" @default.
- W3157917721 isRetracted "false" @default.
- W3157917721 magId "3157917721" @default.
- W3157917721 workType "article" @default.