Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157931173> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3157931173 abstract "Condition assessment and health monitoring (CAHM) of built assets requires effective and continuous monitoring of any changes to the material and/or geometric properties of the assets in order to detect any early signs of defects or damage and act on time. Most of the traditional CAHM techniques, however, depend on manual labour despite that, in some cases, the inspection environment can be unsafe and could lead to low efficiency or misjudgement of the severity of the defect. In recent years, computer vision techniques have been proposed as an automated alternative to the traditional CAHM techniques as methods for extracting and analysing feature-related information from asset images and videos. Such methods have proven to be robust and effective solutions, complementary to current time-consuming and unreliable manual observational practices. This work is concerned with the development of a deep learning-based smartphone app, which allows real-time detection of four types of defects in buildings, namely, cracks, mould, stain and paint deterioration. Since smartphones are widely available and equipped with high-resolution cameras, this application can offer a practical, low-cost solution for condition assessment procedures of built assets. The obtained results are promising and support the feasibility and effectiveness of the approach to identify and classify various types of building defects." @default.
- W3157931173 created "2021-05-10" @default.
- W3157931173 creator A5010641119 @default.
- W3157931173 creator A5048341546 @default.
- W3157931173 date "2021-05-04" @default.
- W3157931173 modified "2023-09-28" @default.
- W3157931173 title "Deep learning smartphone application for real‐time detection of defects in buildings" @default.
- W3157931173 cites W1663984431 @default.
- W3157931173 cites W1861492603 @default.
- W3157931173 cites W2000779269 @default.
- W3157931173 cites W2005029343 @default.
- W3157931173 cites W2030398544 @default.
- W3157931173 cites W2063629235 @default.
- W3157931173 cites W2072750586 @default.
- W3157931173 cites W2089181482 @default.
- W3157931173 cites W2097376151 @default.
- W3157931173 cites W2115579991 @default.
- W3157931173 cites W2140694235 @default.
- W3157931173 cites W2165568289 @default.
- W3157931173 cites W2165698076 @default.
- W3157931173 cites W2325450252 @default.
- W3157931173 cites W2515357728 @default.
- W3157931173 cites W2557728737 @default.
- W3157931173 cites W2598457882 @default.
- W3157931173 cites W2618799552 @default.
- W3157931173 cites W2804580543 @default.
- W3157931173 cites W2862109938 @default.
- W3157931173 cites W2898300628 @default.
- W3157931173 cites W2902164950 @default.
- W3157931173 cites W2902796738 @default.
- W3157931173 cites W2903650079 @default.
- W3157931173 cites W2912514498 @default.
- W3157931173 cites W2954996726 @default.
- W3157931173 cites W2962242947 @default.
- W3157931173 cites W2962766617 @default.
- W3157931173 cites W2965127303 @default.
- W3157931173 cites W3003890779 @default.
- W3157931173 cites W3014123961 @default.
- W3157931173 cites W3100931193 @default.
- W3157931173 cites W3124942917 @default.
- W3157931173 cites W4250306094 @default.
- W3157931173 cites W583857049 @default.
- W3157931173 doi "https://doi.org/10.1002/stc.2751" @default.
- W3157931173 hasPublicationYear "2021" @default.
- W3157931173 type Work @default.
- W3157931173 sameAs 3157931173 @default.
- W3157931173 citedByCount "14" @default.
- W3157931173 countsByYear W31579311732021 @default.
- W3157931173 countsByYear W31579311732022 @default.
- W3157931173 countsByYear W31579311732023 @default.
- W3157931173 crossrefType "journal-article" @default.
- W3157931173 hasAuthorship W3157931173A5010641119 @default.
- W3157931173 hasAuthorship W3157931173A5048341546 @default.
- W3157931173 hasBestOaLocation W31579311731 @default.
- W3157931173 hasConcept C108583219 @default.
- W3157931173 hasConcept C138885662 @default.
- W3157931173 hasConcept C154945302 @default.
- W3157931173 hasConcept C2776401178 @default.
- W3157931173 hasConcept C38652104 @default.
- W3157931173 hasConcept C41008148 @default.
- W3157931173 hasConcept C41895202 @default.
- W3157931173 hasConcept C76178495 @default.
- W3157931173 hasConcept C79403827 @default.
- W3157931173 hasConceptScore W3157931173C108583219 @default.
- W3157931173 hasConceptScore W3157931173C138885662 @default.
- W3157931173 hasConceptScore W3157931173C154945302 @default.
- W3157931173 hasConceptScore W3157931173C2776401178 @default.
- W3157931173 hasConceptScore W3157931173C38652104 @default.
- W3157931173 hasConceptScore W3157931173C41008148 @default.
- W3157931173 hasConceptScore W3157931173C41895202 @default.
- W3157931173 hasConceptScore W3157931173C76178495 @default.
- W3157931173 hasConceptScore W3157931173C79403827 @default.
- W3157931173 hasIssue "7" @default.
- W3157931173 hasLocation W31579311731 @default.
- W3157931173 hasOpenAccess W3157931173 @default.
- W3157931173 hasPrimaryLocation W31579311731 @default.
- W3157931173 hasRelatedWork W2731899572 @default.
- W3157931173 hasRelatedWork W2791559790 @default.
- W3157931173 hasRelatedWork W2939353110 @default.
- W3157931173 hasRelatedWork W2996333182 @default.
- W3157931173 hasRelatedWork W3009238340 @default.
- W3157931173 hasRelatedWork W3215138031 @default.
- W3157931173 hasRelatedWork W4297779434 @default.
- W3157931173 hasRelatedWork W4318482810 @default.
- W3157931173 hasRelatedWork W4321369474 @default.
- W3157931173 hasRelatedWork W4360585206 @default.
- W3157931173 hasVolume "28" @default.
- W3157931173 isParatext "false" @default.
- W3157931173 isRetracted "false" @default.
- W3157931173 magId "3157931173" @default.
- W3157931173 workType "article" @default.