Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157933550> ?p ?o ?g. }
- W3157933550 endingPage "15" @default.
- W3157933550 startingPage "1" @default.
- W3157933550 abstract "Deep learning algorithms have the advantages of clear structure and high accuracy in image recognition. Accurate identification of pests and diseases in crops can improve the pertinence of pest control in farmland, which is beneficial to agricultural production. This paper proposes a DCNN-G model based on deep learning and fusion of Google data analysis, using this model to train 640 data samples, and then using 5000 test samples for testing, selecting 80% as the training set and 20% as the test set, and compare the accuracy of the model with the conventional recognition model. Research results show that after degrading a quality level 1 image using the degradation parameters above, 9 quality level images are obtained. Use YOLO’s improved network, YOLO-V4, to test and validate images after quality level classification. Images of different quality levels, especially images of adjacent levels, are subjectively observed by human eyes, and it is difficult to distinguish the quality of the images. Using the algorithm model proposed in this article, the recognition accuracy is 95%, which is much higher than the basic 84% of the DCNN model. The quality level classification of crop disease and insect pest images can provide important prior information for the understanding of crop disease and insect pest images and can also provide a scientific basis for testing the imaging capabilities of sensors and objectively evaluating the image quality of crop diseases and pests. The use of convolutional neural networks to realize the classification of crop pest and disease image quality not only expands the application field of deep learning but also provides a new method for crop pest and disease image quality assessment." @default.
- W3157933550 created "2021-05-10" @default.
- W3157933550 creator A5012529031 @default.
- W3157933550 creator A5066102428 @default.
- W3157933550 date "2021-04-27" @default.
- W3157933550 modified "2023-09-27" @default.
- W3157933550 title "Image Recognition of Crop Diseases and Insect Pests Based on Deep Learning" @default.
- W3157933550 cites W1967901226 @default.
- W3157933550 cites W1983820447 @default.
- W3157933550 cites W1991785974 @default.
- W3157933550 cites W2011775870 @default.
- W3157933550 cites W2027560260 @default.
- W3157933550 cites W2027961328 @default.
- W3157933550 cites W2243417253 @default.
- W3157933550 cites W2402026173 @default.
- W3157933550 cites W2736596523 @default.
- W3157933550 cites W2754544178 @default.
- W3157933550 cites W2786355301 @default.
- W3157933550 cites W2807888105 @default.
- W3157933550 cites W2897772777 @default.
- W3157933550 cites W2910009410 @default.
- W3157933550 cites W2919115771 @default.
- W3157933550 cites W3033444202 @default.
- W3157933550 cites W3083020087 @default.
- W3157933550 cites W3100245404 @default.
- W3157933550 cites W935179719 @default.
- W3157933550 doi "https://doi.org/10.1155/2021/5511676" @default.
- W3157933550 hasPublicationYear "2021" @default.
- W3157933550 type Work @default.
- W3157933550 sameAs 3157933550 @default.
- W3157933550 citedByCount "12" @default.
- W3157933550 countsByYear W31579335502021 @default.
- W3157933550 countsByYear W31579335502022 @default.
- W3157933550 countsByYear W31579335502023 @default.
- W3157933550 crossrefType "journal-article" @default.
- W3157933550 hasAuthorship W3157933550A5012529031 @default.
- W3157933550 hasAuthorship W3157933550A5066102428 @default.
- W3157933550 hasBestOaLocation W31579335501 @default.
- W3157933550 hasConcept C108583219 @default.
- W3157933550 hasConcept C111472728 @default.
- W3157933550 hasConcept C115961682 @default.
- W3157933550 hasConcept C116834253 @default.
- W3157933550 hasConcept C119857082 @default.
- W3157933550 hasConcept C138885662 @default.
- W3157933550 hasConcept C150903083 @default.
- W3157933550 hasConcept C153180895 @default.
- W3157933550 hasConcept C154945302 @default.
- W3157933550 hasConcept C169903167 @default.
- W3157933550 hasConcept C177264268 @default.
- W3157933550 hasConcept C18903297 @default.
- W3157933550 hasConcept C199360897 @default.
- W3157933550 hasConcept C22508944 @default.
- W3157933550 hasConcept C2779530757 @default.
- W3157933550 hasConcept C2994141551 @default.
- W3157933550 hasConcept C3019235130 @default.
- W3157933550 hasConcept C41008148 @default.
- W3157933550 hasConcept C55020928 @default.
- W3157933550 hasConcept C59822182 @default.
- W3157933550 hasConcept C6557445 @default.
- W3157933550 hasConcept C81363708 @default.
- W3157933550 hasConcept C86803240 @default.
- W3157933550 hasConceptScore W3157933550C108583219 @default.
- W3157933550 hasConceptScore W3157933550C111472728 @default.
- W3157933550 hasConceptScore W3157933550C115961682 @default.
- W3157933550 hasConceptScore W3157933550C116834253 @default.
- W3157933550 hasConceptScore W3157933550C119857082 @default.
- W3157933550 hasConceptScore W3157933550C138885662 @default.
- W3157933550 hasConceptScore W3157933550C150903083 @default.
- W3157933550 hasConceptScore W3157933550C153180895 @default.
- W3157933550 hasConceptScore W3157933550C154945302 @default.
- W3157933550 hasConceptScore W3157933550C169903167 @default.
- W3157933550 hasConceptScore W3157933550C177264268 @default.
- W3157933550 hasConceptScore W3157933550C18903297 @default.
- W3157933550 hasConceptScore W3157933550C199360897 @default.
- W3157933550 hasConceptScore W3157933550C22508944 @default.
- W3157933550 hasConceptScore W3157933550C2779530757 @default.
- W3157933550 hasConceptScore W3157933550C2994141551 @default.
- W3157933550 hasConceptScore W3157933550C3019235130 @default.
- W3157933550 hasConceptScore W3157933550C41008148 @default.
- W3157933550 hasConceptScore W3157933550C55020928 @default.
- W3157933550 hasConceptScore W3157933550C59822182 @default.
- W3157933550 hasConceptScore W3157933550C6557445 @default.
- W3157933550 hasConceptScore W3157933550C81363708 @default.
- W3157933550 hasConceptScore W3157933550C86803240 @default.
- W3157933550 hasFunder F4320323085 @default.
- W3157933550 hasLocation W31579335501 @default.
- W3157933550 hasLocation W31579335502 @default.
- W3157933550 hasOpenAccess W3157933550 @default.
- W3157933550 hasPrimaryLocation W31579335501 @default.
- W3157933550 hasRelatedWork W2337926734 @default.
- W3157933550 hasRelatedWork W2470368200 @default.
- W3157933550 hasRelatedWork W2732542196 @default.
- W3157933550 hasRelatedWork W2738221750 @default.
- W3157933550 hasRelatedWork W3099765033 @default.
- W3157933550 hasRelatedWork W3156786002 @default.
- W3157933550 hasRelatedWork W3166467183 @default.
- W3157933550 hasRelatedWork W4311257506 @default.
- W3157933550 hasRelatedWork W4366224123 @default.