Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157948641> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3157948641 endingPage "44" @default.
- W3157948641 startingPage "34" @default.
- W3157948641 abstract "Purpose This study aims to overcome the problem of traditional association rules relying almost entirely on expert experience to set relevant interest indexes in mining. Second, this project can effectively solve the problem of four types of rules being present in the database at the same time. The traditional association algorithm can only mine one or two types of rules and cannot fully explore the database knowledge in the decision-making process for library recommendation. Design/methodology/approach The authors proposed a Markov logic network method to reconstruct association rule-mining tasks for library recommendation and compared the method proposed in this paper to traditional Apriori, FP-Growth, Inverse, Sporadic and UserBasedCF algorithms on two history library data sets and the Chess and Accident data sets. Findings The method used in this project had two major advantages. First, the authors were able to mine four types of rules in an integrated manner without having to set interest measures. In addition, because it represents the relevance of mining in the network, decision-makers can use network visualization tools to fully understand the results of mining in library recommendation and data sets from other fields. Research limitations/implications The time cost of the project is still high for large data sets. The authors will solve this problem by mapping books, items, or attributes to higher granularity to reduce the computational complexity in the future. Originality/value The authors believed that knowledge of complex real-world problems can be well captured from a network perspective. This study can help researchers to avoid setting interest metrics and to comprehensively extract frequent, rare, positive, and negative rules in an integrated manner." @default.
- W3157948641 created "2021-05-10" @default.
- W3157948641 creator A5042232839 @default.
- W3157948641 creator A5052065564 @default.
- W3157948641 creator A5055299862 @default.
- W3157948641 creator A5063033738 @default.
- W3157948641 creator A5084337771 @default.
- W3157948641 date "2021-05-05" @default.
- W3157948641 modified "2023-09-27" @default.
- W3157948641 title "A Markov logic network method for reconstructing association rule-mining tasks in library book recommendation" @default.
- W3157948641 cites W1996508123 @default.
- W3157948641 cites W2064853889 @default.
- W3157948641 cites W2113898611 @default.
- W3157948641 cites W2346327804 @default.
- W3157948641 cites W2520737683 @default.
- W3157948641 cites W2536322217 @default.
- W3157948641 cites W2564903370 @default.
- W3157948641 cites W2576148507 @default.
- W3157948641 cites W2611464996 @default.
- W3157948641 cites W2733614020 @default.
- W3157948641 cites W2749706176 @default.
- W3157948641 cites W2751182624 @default.
- W3157948641 cites W2775870673 @default.
- W3157948641 cites W2794160291 @default.
- W3157948641 cites W2888439716 @default.
- W3157948641 cites W2901333439 @default.
- W3157948641 cites W2951597325 @default.
- W3157948641 cites W3004874664 @default.
- W3157948641 cites W78245881 @default.
- W3157948641 cites W992652367 @default.
- W3157948641 doi "https://doi.org/10.1108/idd-09-2020-0110" @default.
- W3157948641 hasPublicationYear "2021" @default.
- W3157948641 type Work @default.
- W3157948641 sameAs 3157948641 @default.
- W3157948641 citedByCount "3" @default.
- W3157948641 countsByYear W31579486412022 @default.
- W3157948641 countsByYear W31579486412023 @default.
- W3157948641 crossrefType "journal-article" @default.
- W3157948641 hasAuthorship W3157948641A5042232839 @default.
- W3157948641 hasAuthorship W3157948641A5052065564 @default.
- W3157948641 hasAuthorship W3157948641A5055299862 @default.
- W3157948641 hasAuthorship W3157948641A5063033738 @default.
- W3157948641 hasAuthorship W3157948641A5084337771 @default.
- W3157948641 hasConcept C11012388 @default.
- W3157948641 hasConcept C119857082 @default.
- W3157948641 hasConcept C120567893 @default.
- W3157948641 hasConcept C124101348 @default.
- W3157948641 hasConcept C154945302 @default.
- W3157948641 hasConcept C158154518 @default.
- W3157948641 hasConcept C177264268 @default.
- W3157948641 hasConcept C17744445 @default.
- W3157948641 hasConcept C193524817 @default.
- W3157948641 hasConcept C199360897 @default.
- W3157948641 hasConcept C199539241 @default.
- W3157948641 hasConcept C23123220 @default.
- W3157948641 hasConcept C2522767166 @default.
- W3157948641 hasConcept C2776950860 @default.
- W3157948641 hasConcept C41008148 @default.
- W3157948641 hasConcept C81440476 @default.
- W3157948641 hasConceptScore W3157948641C11012388 @default.
- W3157948641 hasConceptScore W3157948641C119857082 @default.
- W3157948641 hasConceptScore W3157948641C120567893 @default.
- W3157948641 hasConceptScore W3157948641C124101348 @default.
- W3157948641 hasConceptScore W3157948641C154945302 @default.
- W3157948641 hasConceptScore W3157948641C158154518 @default.
- W3157948641 hasConceptScore W3157948641C177264268 @default.
- W3157948641 hasConceptScore W3157948641C17744445 @default.
- W3157948641 hasConceptScore W3157948641C193524817 @default.
- W3157948641 hasConceptScore W3157948641C199360897 @default.
- W3157948641 hasConceptScore W3157948641C199539241 @default.
- W3157948641 hasConceptScore W3157948641C23123220 @default.
- W3157948641 hasConceptScore W3157948641C2522767166 @default.
- W3157948641 hasConceptScore W3157948641C2776950860 @default.
- W3157948641 hasConceptScore W3157948641C41008148 @default.
- W3157948641 hasConceptScore W3157948641C81440476 @default.
- W3157948641 hasIssue "1" @default.
- W3157948641 hasLocation W31579486411 @default.
- W3157948641 hasOpenAccess W3157948641 @default.
- W3157948641 hasPrimaryLocation W31579486411 @default.
- W3157948641 hasRelatedWork W2042132072 @default.
- W3157948641 hasRelatedWork W2085976791 @default.
- W3157948641 hasRelatedWork W2236657982 @default.
- W3157948641 hasRelatedWork W2347219288 @default.
- W3157948641 hasRelatedWork W2379665788 @default.
- W3157948641 hasRelatedWork W2382078898 @default.
- W3157948641 hasRelatedWork W2758252385 @default.
- W3157948641 hasRelatedWork W2949943516 @default.
- W3157948641 hasRelatedWork W1910415783 @default.
- W3157948641 hasRelatedWork W32648866 @default.
- W3157948641 hasVolume "50" @default.
- W3157948641 isParatext "false" @default.
- W3157948641 isRetracted "false" @default.
- W3157948641 magId "3157948641" @default.
- W3157948641 workType "article" @default.