Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157957914> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3157957914 abstract "<p>An analysis of the climate system is usually complicated by its very high dimensionality and its nonlinearity which impedes spatial and time scale separation. An even more difficult problem is to obtain separate estimates of the climate system&#8217;s response to external forcing (e.g. anthropogenic emissions of greenhouse gases and aerosols) and the contribution of the climate system&#8217;s internal variability into recent climate trends. Identification of spatiotemporal climatic patterns representing forced signals and internal variability in global climate models (GCMs) would make it possible to characterize these patterns in the observed data and to analyze dynamical relationships between these two types of climate variability.</p><p>In contrast with real climate observations, many GCMs are able to provide ensembles of many climate realizations under the same external forcing, with relatively independent initial conditions (e.g. LENS [1], MPI-GE [2], CMIP ensembles of 20th century climate). In this report, a recently developed method of empirical spatio-temporal data decomposition into linear dynamical modes (LDMs) [3] based on Bayesian approach, is modified to address the problem of self-consistent separation of the climate system internal variability modes and the forced response signals in such ensembles. The LDM method provides the time series of principal components and corresponding spatial patterns; in application to an ensemble of realizations, it determines both time series of the internal variability modes of current realization and the time series of forced response (defined as signal shared by all realizations). The advantage of LDMs is the ability to take into account the time scales of the system evolution better than some other linear techniques, e.g. traditional empirical orthogonal function decomposition. Furthermore, the modified ensemble LDM (E-LDM) method is designed to determine the optimal number of principal components and to distinguish their time scales for both internal variability modes and forced response signals.</p><p>The technique and results of applying LDM method to different GCM ensemble realizations will be presented and discussed. This research was supported by the Russian Science Foundation (Grant No. 18-12-00231).</p><p>[1] Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M. Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and M. Vertenstein (2015), The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-13-00255.1,&#160;96, 1333-1349&#160;</p><p>[2] Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kr&#246;ger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, N., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B. and Marotzke, J. (2019). The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability.&#160;Journal of Advances in Modeling Earth Systems, 11,&#160;1-21.&#160;https://doi.org/10.1029/2019MS001639</p><p>[3] Gavrilov, A., Kravtsov, S., Mukhin, D. (2020). Analysis of 20th century surface air temperature using linear dynamical modes. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(12), 123110. https://doi.org/10.1063/5.0028246</p>" @default.
- W3157957914 created "2021-05-10" @default.
- W3157957914 creator A5007822882 @default.
- W3157957914 creator A5027464428 @default.
- W3157957914 creator A5052337472 @default.
- W3157957914 creator A5069008045 @default.
- W3157957914 creator A5070647414 @default.
- W3157957914 creator A5084196127 @default.
- W3157957914 date "2021-03-03" @default.
- W3157957914 modified "2023-10-14" @default.
- W3157957914 title "Application of linear dynamical mode decomposition to ensembles of climate simulations" @default.
- W3157957914 cites W2125634634 @default.
- W3157957914 cites W2559366015 @default.
- W3157957914 cites W3107166353 @default.
- W3157957914 doi "https://doi.org/10.5194/egusphere-egu21-4869" @default.
- W3157957914 hasPublicationYear "2021" @default.
- W3157957914 type Work @default.
- W3157957914 sameAs 3157957914 @default.
- W3157957914 citedByCount "0" @default.
- W3157957914 crossrefType "posted-content" @default.
- W3157957914 hasAuthorship W3157957914A5007822882 @default.
- W3157957914 hasAuthorship W3157957914A5027464428 @default.
- W3157957914 hasAuthorship W3157957914A5052337472 @default.
- W3157957914 hasAuthorship W3157957914A5069008045 @default.
- W3157957914 hasAuthorship W3157957914A5070647414 @default.
- W3157957914 hasAuthorship W3157957914A5084196127 @default.
- W3157957914 hasConcept C105795698 @default.
- W3157957914 hasConcept C107054158 @default.
- W3157957914 hasConcept C111030470 @default.
- W3157957914 hasConcept C121332964 @default.
- W3157957914 hasConcept C127313418 @default.
- W3157957914 hasConcept C132651083 @default.
- W3157957914 hasConcept C143724316 @default.
- W3157957914 hasConcept C151730666 @default.
- W3157957914 hasConcept C153294291 @default.
- W3157957914 hasConcept C154945302 @default.
- W3157957914 hasConcept C168754636 @default.
- W3157957914 hasConcept C18903297 @default.
- W3157957914 hasConcept C197115733 @default.
- W3157957914 hasConcept C2776502983 @default.
- W3157957914 hasConcept C2778760939 @default.
- W3157957914 hasConcept C2781089630 @default.
- W3157957914 hasConcept C33923547 @default.
- W3157957914 hasConcept C39432304 @default.
- W3157957914 hasConcept C41008148 @default.
- W3157957914 hasConcept C41156917 @default.
- W3157957914 hasConcept C49204034 @default.
- W3157957914 hasConcept C62520636 @default.
- W3157957914 hasConcept C79379906 @default.
- W3157957914 hasConcept C80368990 @default.
- W3157957914 hasConcept C86803240 @default.
- W3157957914 hasConceptScore W3157957914C105795698 @default.
- W3157957914 hasConceptScore W3157957914C107054158 @default.
- W3157957914 hasConceptScore W3157957914C111030470 @default.
- W3157957914 hasConceptScore W3157957914C121332964 @default.
- W3157957914 hasConceptScore W3157957914C127313418 @default.
- W3157957914 hasConceptScore W3157957914C132651083 @default.
- W3157957914 hasConceptScore W3157957914C143724316 @default.
- W3157957914 hasConceptScore W3157957914C151730666 @default.
- W3157957914 hasConceptScore W3157957914C153294291 @default.
- W3157957914 hasConceptScore W3157957914C154945302 @default.
- W3157957914 hasConceptScore W3157957914C168754636 @default.
- W3157957914 hasConceptScore W3157957914C18903297 @default.
- W3157957914 hasConceptScore W3157957914C197115733 @default.
- W3157957914 hasConceptScore W3157957914C2776502983 @default.
- W3157957914 hasConceptScore W3157957914C2778760939 @default.
- W3157957914 hasConceptScore W3157957914C2781089630 @default.
- W3157957914 hasConceptScore W3157957914C33923547 @default.
- W3157957914 hasConceptScore W3157957914C39432304 @default.
- W3157957914 hasConceptScore W3157957914C41008148 @default.
- W3157957914 hasConceptScore W3157957914C41156917 @default.
- W3157957914 hasConceptScore W3157957914C49204034 @default.
- W3157957914 hasConceptScore W3157957914C62520636 @default.
- W3157957914 hasConceptScore W3157957914C79379906 @default.
- W3157957914 hasConceptScore W3157957914C80368990 @default.
- W3157957914 hasConceptScore W3157957914C86803240 @default.
- W3157957914 hasLocation W31579579141 @default.
- W3157957914 hasOpenAccess W3157957914 @default.
- W3157957914 hasPrimaryLocation W31579579141 @default.
- W3157957914 hasRelatedWork W10365432 @default.
- W3157957914 hasRelatedWork W1458884 @default.
- W3157957914 hasRelatedWork W2554134 @default.
- W3157957914 hasRelatedWork W2653463 @default.
- W3157957914 hasRelatedWork W3630699 @default.
- W3157957914 hasRelatedWork W4704324 @default.
- W3157957914 hasRelatedWork W7096435 @default.
- W3157957914 hasRelatedWork W8847818 @default.
- W3157957914 hasRelatedWork W8889523 @default.
- W3157957914 hasRelatedWork W993398 @default.
- W3157957914 isParatext "false" @default.
- W3157957914 isRetracted "false" @default.
- W3157957914 magId "3157957914" @default.
- W3157957914 workType "article" @default.