Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157966784> ?p ?o ?g. }
- W3157966784 endingPage "109578" @default.
- W3157966784 startingPage "109578" @default.
- W3157966784 abstract "The emergy accounting method has been widely applied to terrestrial and marine ecosystems although there is a lack of emergy studies focusing on phytoplankton primary production. Phytoplankton production is a pivotal process since it is intimately coupled with oceanic food webs, energy fluxes, carbon cycle, and Earth's climate. In this study, we proposed a new methodology to perform a biophysical assessment of the global phytoplankton primary production combining Machine Learning (ML) techniques and an emergy-based accounting model. Firstly, we produced global phytoplankton production estimates using an Artificial Neural Network (ANN) model. Secondly, we assessed the main energy inputs supporting the global phytoplankton production. Finally, we converted these inputs into emergy units and analysed the results from an ecological perspective. Among the energy flows, tides showed the highest maximum emergy contribution to global phytoplankton production highlighting the importance of thise flow in the complex dynamics of marine ecosystems. In addition, an emergy/production ratio was calculated showing different global patterns in terms of emergy convergence into the primary production process. We believe that the proposed emergy-based assessment of phytoplankton production could be extremely valuable to improve our understanding of this key biological process at global scale adopting a systems perspective. This model can also provide a useful benchmark for future assessments of marine ecosystem services at global scale." @default.
- W3157966784 created "2021-05-10" @default.
- W3157966784 creator A5005545237 @default.
- W3157966784 creator A5033080224 @default.
- W3157966784 creator A5050801153 @default.
- W3157966784 creator A5066762371 @default.
- W3157966784 date "2021-07-01" @default.
- W3157966784 modified "2023-10-16" @default.
- W3157966784 title "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models" @default.
- W3157966784 cites W1498436455 @default.
- W3157966784 cites W1533208962 @default.
- W3157966784 cites W1550470625 @default.
- W3157966784 cites W1686175988 @default.
- W3157966784 cites W1964761742 @default.
- W3157966784 cites W1973445304 @default.
- W3157966784 cites W1980938073 @default.
- W3157966784 cites W1991048347 @default.
- W3157966784 cites W1999250331 @default.
- W3157966784 cites W2006356675 @default.
- W3157966784 cites W2007086084 @default.
- W3157966784 cites W2007101051 @default.
- W3157966784 cites W2023160094 @default.
- W3157966784 cites W2025869818 @default.
- W3157966784 cites W2026517167 @default.
- W3157966784 cites W2029815620 @default.
- W3157966784 cites W2040649777 @default.
- W3157966784 cites W2043445871 @default.
- W3157966784 cites W2051663919 @default.
- W3157966784 cites W2053022429 @default.
- W3157966784 cites W2055183877 @default.
- W3157966784 cites W2056116149 @default.
- W3157966784 cites W2058731966 @default.
- W3157966784 cites W2063178769 @default.
- W3157966784 cites W2084415244 @default.
- W3157966784 cites W2089472398 @default.
- W3157966784 cites W2091525788 @default.
- W3157966784 cites W2093409046 @default.
- W3157966784 cites W2095115170 @default.
- W3157966784 cites W2096865695 @default.
- W3157966784 cites W2098828870 @default.
- W3157966784 cites W2108084128 @default.
- W3157966784 cites W2111738696 @default.
- W3157966784 cites W2113039267 @default.
- W3157966784 cites W2122038006 @default.
- W3157966784 cites W2136402371 @default.
- W3157966784 cites W2139095875 @default.
- W3157966784 cites W2145344555 @default.
- W3157966784 cites W2149463205 @default.
- W3157966784 cites W2149674833 @default.
- W3157966784 cites W2151567220 @default.
- W3157966784 cites W2159593456 @default.
- W3157966784 cites W2164287118 @default.
- W3157966784 cites W2165009154 @default.
- W3157966784 cites W2320300217 @default.
- W3157966784 cites W2339868376 @default.
- W3157966784 cites W2342320033 @default.
- W3157966784 cites W2519440347 @default.
- W3157966784 cites W2607407197 @default.
- W3157966784 cites W2621512817 @default.
- W3157966784 cites W2738739117 @default.
- W3157966784 cites W2742026887 @default.
- W3157966784 cites W2743929386 @default.
- W3157966784 cites W2744044354 @default.
- W3157966784 cites W2746485780 @default.
- W3157966784 cites W2768206129 @default.
- W3157966784 cites W2802392386 @default.
- W3157966784 cites W2885721623 @default.
- W3157966784 cites W2903352655 @default.
- W3157966784 cites W2908692497 @default.
- W3157966784 cites W2914826913 @default.
- W3157966784 cites W2933448380 @default.
- W3157966784 cites W2944615203 @default.
- W3157966784 cites W2976676741 @default.
- W3157966784 cites W2976904162 @default.
- W3157966784 cites W2983292893 @default.
- W3157966784 cites W3002591816 @default.
- W3157966784 cites W3007191748 @default.
- W3157966784 cites W3008785850 @default.
- W3157966784 cites W3012586087 @default.
- W3157966784 doi "https://doi.org/10.1016/j.ecolmodel.2021.109578" @default.
- W3157966784 hasPublicationYear "2021" @default.
- W3157966784 type Work @default.
- W3157966784 sameAs 3157966784 @default.
- W3157966784 citedByCount "10" @default.
- W3157966784 countsByYear W31579667842021 @default.
- W3157966784 countsByYear W31579667842022 @default.
- W3157966784 countsByYear W31579667842023 @default.
- W3157966784 crossrefType "journal-article" @default.
- W3157966784 hasAuthorship W3157966784A5005545237 @default.
- W3157966784 hasAuthorship W3157966784A5033080224 @default.
- W3157966784 hasAuthorship W3157966784A5050801153 @default.
- W3157966784 hasAuthorship W3157966784A5066762371 @default.
- W3157966784 hasConcept C107826830 @default.
- W3157966784 hasConcept C110872660 @default.
- W3157966784 hasConcept C139719470 @default.
- W3157966784 hasConcept C142796444 @default.
- W3157966784 hasConcept C151152651 @default.
- W3157966784 hasConcept C162324750 @default.