Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158006502> ?p ?o ?g. }
- W3158006502 endingPage "5498" @default.
- W3158006502 startingPage "5483" @default.
- W3158006502 abstract "Reducing the energy consumption of vehicles is one of the greatest challenges we are facing in the mobility sector. A major step in this direction has been taken with the introduction of hybrid electric vehicles. Their performance, however, depends strongly on the energy management strategy used, which exploits the additional degree of freedom of the propulsion system and is inevitably limited by the lack of knowledge about the exact future driving conditions. Various attempts are being made to offer predictions, one of which is to exploit recorded travel data. In this paper, we propose an incremental graph construction algorithm that encapsulates this data in a digital representation of the road network and captures the actual travel routes of the vehicle along with the sequences of the specified measurement signals. The algorithm processes each location estimate separately, together with any desired simultaneously recorded measurement signal such as the vehicle speed, and constructs a directed graph in whose vertices the measurement data is stored. The real-time capability of this algorithm allows an up-to-date representation of both the road network and the signals it contains at all times. Whenever the vehicle is driving on an already visited route, we can obtain distance-resolved predictions by traversing the graph in the direction of travel and querying the stored measurement data. We present two techniques to efficiently store and predict this data, i.e., by using frequentist prediction intervals and Gaussian process regression. Our algorithm runs in real time and without any manual initialization, pre-, or post-processing. Verifications both during real operation on a trolley bus in public transportation and by simulation on a publicly available dataset demonstrate that the algorithm is real-time capable, that it consistently captures and predicts the recorded signals, and that it works in practice." @default.
- W3158006502 created "2021-05-10" @default.
- W3158006502 creator A5007490699 @default.
- W3158006502 creator A5031548808 @default.
- W3158006502 creator A5047498191 @default.
- W3158006502 creator A5047638572 @default.
- W3158006502 creator A5062745930 @default.
- W3158006502 date "2021-06-01" @default.
- W3158006502 modified "2023-10-10" @default.
- W3158006502 title "Real-Time Graph Construction Algorithm for Probabilistic Predictions in Vehicular Applications" @default.
- W3158006502 cites W1527105738 @default.
- W3158006502 cites W1567512734 @default.
- W3158006502 cites W1705505001 @default.
- W3158006502 cites W1966163588 @default.
- W3158006502 cites W1969483458 @default.
- W3158006502 cites W1973798084 @default.
- W3158006502 cites W1987034518 @default.
- W3158006502 cites W2008725231 @default.
- W3158006502 cites W2017749620 @default.
- W3158006502 cites W2027266225 @default.
- W3158006502 cites W2029799049 @default.
- W3158006502 cites W2033815587 @default.
- W3158006502 cites W2033969525 @default.
- W3158006502 cites W2057157575 @default.
- W3158006502 cites W2071091794 @default.
- W3158006502 cites W2074466695 @default.
- W3158006502 cites W2097427210 @default.
- W3158006502 cites W2098883090 @default.
- W3158006502 cites W2106545483 @default.
- W3158006502 cites W2108064043 @default.
- W3158006502 cites W2118389488 @default.
- W3158006502 cites W2119208341 @default.
- W3158006502 cites W2123227625 @default.
- W3158006502 cites W2135137731 @default.
- W3158006502 cites W2141633817 @default.
- W3158006502 cites W2149764047 @default.
- W3158006502 cites W2156531019 @default.
- W3158006502 cites W2163286960 @default.
- W3158006502 cites W2171275074 @default.
- W3158006502 cites W2213842429 @default.
- W3158006502 cites W2235495269 @default.
- W3158006502 cites W2404615467 @default.
- W3158006502 cites W2529000883 @default.
- W3158006502 cites W2549326331 @default.
- W3158006502 cites W2553755808 @default.
- W3158006502 cites W2561145466 @default.
- W3158006502 cites W2610838890 @default.
- W3158006502 cites W2789420111 @default.
- W3158006502 cites W2790839617 @default.
- W3158006502 cites W2794413559 @default.
- W3158006502 cites W2904025397 @default.
- W3158006502 cites W2941560784 @default.
- W3158006502 cites W2943328238 @default.
- W3158006502 cites W3145678509 @default.
- W3158006502 cites W3147291860 @default.
- W3158006502 cites W4232359393 @default.
- W3158006502 doi "https://doi.org/10.1109/tvt.2021.3077063" @default.
- W3158006502 hasPublicationYear "2021" @default.
- W3158006502 type Work @default.
- W3158006502 sameAs 3158006502 @default.
- W3158006502 citedByCount "3" @default.
- W3158006502 countsByYear W31580065022022 @default.
- W3158006502 countsByYear W31580065022023 @default.
- W3158006502 crossrefType "journal-article" @default.
- W3158006502 hasAuthorship W3158006502A5007490699 @default.
- W3158006502 hasAuthorship W3158006502A5031548808 @default.
- W3158006502 hasAuthorship W3158006502A5047498191 @default.
- W3158006502 hasAuthorship W3158006502A5047638572 @default.
- W3158006502 hasAuthorship W3158006502A5062745930 @default.
- W3158006502 hasBestOaLocation W31580065022 @default.
- W3158006502 hasConcept C11413529 @default.
- W3158006502 hasConcept C114466953 @default.
- W3158006502 hasConcept C119599485 @default.
- W3158006502 hasConcept C121332964 @default.
- W3158006502 hasConcept C124101348 @default.
- W3158006502 hasConcept C127413603 @default.
- W3158006502 hasConcept C132525143 @default.
- W3158006502 hasConcept C13280743 @default.
- W3158006502 hasConcept C154945302 @default.
- W3158006502 hasConcept C163716315 @default.
- W3158006502 hasConcept C165696696 @default.
- W3158006502 hasConcept C176809094 @default.
- W3158006502 hasConcept C199360897 @default.
- W3158006502 hasConcept C205649164 @default.
- W3158006502 hasConcept C2780165032 @default.
- W3158006502 hasConcept C38652104 @default.
- W3158006502 hasConcept C41008148 @default.
- W3158006502 hasConcept C49937458 @default.
- W3158006502 hasConcept C61326573 @default.
- W3158006502 hasConcept C62520636 @default.
- W3158006502 hasConcept C80444323 @default.
- W3158006502 hasConceptScore W3158006502C11413529 @default.
- W3158006502 hasConceptScore W3158006502C114466953 @default.
- W3158006502 hasConceptScore W3158006502C119599485 @default.
- W3158006502 hasConceptScore W3158006502C121332964 @default.
- W3158006502 hasConceptScore W3158006502C124101348 @default.
- W3158006502 hasConceptScore W3158006502C127413603 @default.
- W3158006502 hasConceptScore W3158006502C132525143 @default.