Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158243908> ?p ?o ?g. }
- W3158243908 endingPage "118" @default.
- W3158243908 startingPage "105" @default.
- W3158243908 abstract "In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matrices, which are inherently points that live on a curved Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, traditional Euclidean machine learning algorithms yield poor results on such data. In this paper, we generalize the probabilistic learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices equipped with Riemannian natural metric (affine-invariant metric). By exploiting the induced Riemannian distance, we derive the probabilistic learning Riemannian space quantization algorithm, obtaining the learning rule through Riemannian gradient descent. Empirical investigations on synthetic data, image data , and motor imagery electroencephalogram (EEG) data demonstrate the superior performance of the proposed method." @default.
- W3158243908 created "2021-05-10" @default.
- W3158243908 creator A5022541825 @default.
- W3158243908 creator A5043933382 @default.
- W3158243908 creator A5051182859 @default.
- W3158243908 creator A5065849358 @default.
- W3158243908 creator A5075217125 @default.
- W3158243908 date "2021-10-01" @default.
- W3158243908 modified "2023-10-18" @default.
- W3158243908 title "Probabilistic learning vector quantization on manifold of symmetric positive definite matrices" @default.
- W3158243908 cites W108448858 @default.
- W3158243908 cites W1549083695 @default.
- W3158243908 cites W1965769973 @default.
- W3158243908 cites W1983496390 @default.
- W3158243908 cites W2032236594 @default.
- W3158243908 cites W2035715639 @default.
- W3158243908 cites W2039434802 @default.
- W3158243908 cites W2048192550 @default.
- W3158243908 cites W2094150678 @default.
- W3158243908 cites W2096597330 @default.
- W3158243908 cites W2103096501 @default.
- W3158243908 cites W2109993655 @default.
- W3158243908 cites W2116022929 @default.
- W3158243908 cites W2123963736 @default.
- W3158243908 cites W2124039671 @default.
- W3158243908 cites W2125949583 @default.
- W3158243908 cites W2139212933 @default.
- W3158243908 cites W2151941540 @default.
- W3158243908 cites W2169579681 @default.
- W3158243908 cites W2464293894 @default.
- W3158243908 cites W2555754051 @default.
- W3158243908 cites W2602279467 @default.
- W3158243908 cites W2802088019 @default.
- W3158243908 cites W2921618710 @default.
- W3158243908 cites W2962772276 @default.
- W3158243908 cites W2963167705 @default.
- W3158243908 cites W3012897833 @default.
- W3158243908 cites W3102317997 @default.
- W3158243908 cites W4252684946 @default.
- W3158243908 doi "https://doi.org/10.1016/j.neunet.2021.04.024" @default.
- W3158243908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33984734" @default.
- W3158243908 hasPublicationYear "2021" @default.
- W3158243908 type Work @default.
- W3158243908 sameAs 3158243908 @default.
- W3158243908 citedByCount "5" @default.
- W3158243908 countsByYear W31582439082022 @default.
- W3158243908 countsByYear W31582439082023 @default.
- W3158243908 crossrefType "journal-article" @default.
- W3158243908 hasAuthorship W3158243908A5022541825 @default.
- W3158243908 hasAuthorship W3158243908A5043933382 @default.
- W3158243908 hasAuthorship W3158243908A5051182859 @default.
- W3158243908 hasAuthorship W3158243908A5065849358 @default.
- W3158243908 hasAuthorship W3158243908A5075217125 @default.
- W3158243908 hasBestOaLocation W31582439081 @default.
- W3158243908 hasConcept C109546454 @default.
- W3158243908 hasConcept C11413529 @default.
- W3158243908 hasConcept C121332964 @default.
- W3158243908 hasConcept C12520029 @default.
- W3158243908 hasConcept C127413603 @default.
- W3158243908 hasConcept C151876577 @default.
- W3158243908 hasConcept C153120616 @default.
- W3158243908 hasConcept C153180895 @default.
- W3158243908 hasConcept C153258448 @default.
- W3158243908 hasConcept C154945302 @default.
- W3158243908 hasConcept C158693339 @default.
- W3158243908 hasConcept C169391604 @default.
- W3158243908 hasConcept C181104567 @default.
- W3158243908 hasConcept C186450821 @default.
- W3158243908 hasConcept C195065555 @default.
- W3158243908 hasConcept C199833920 @default.
- W3158243908 hasConcept C202444582 @default.
- W3158243908 hasConcept C2524010 @default.
- W3158243908 hasConcept C2779593128 @default.
- W3158243908 hasConcept C33923547 @default.
- W3158243908 hasConcept C40567965 @default.
- W3158243908 hasConcept C41008148 @default.
- W3158243908 hasConcept C49712288 @default.
- W3158243908 hasConcept C49937458 @default.
- W3158243908 hasConcept C50644808 @default.
- W3158243908 hasConcept C529865628 @default.
- W3158243908 hasConcept C62520636 @default.
- W3158243908 hasConcept C70518039 @default.
- W3158243908 hasConcept C78519656 @default.
- W3158243908 hasConcept C92757383 @default.
- W3158243908 hasConceptScore W3158243908C109546454 @default.
- W3158243908 hasConceptScore W3158243908C11413529 @default.
- W3158243908 hasConceptScore W3158243908C121332964 @default.
- W3158243908 hasConceptScore W3158243908C12520029 @default.
- W3158243908 hasConceptScore W3158243908C127413603 @default.
- W3158243908 hasConceptScore W3158243908C151876577 @default.
- W3158243908 hasConceptScore W3158243908C153120616 @default.
- W3158243908 hasConceptScore W3158243908C153180895 @default.
- W3158243908 hasConceptScore W3158243908C153258448 @default.
- W3158243908 hasConceptScore W3158243908C154945302 @default.
- W3158243908 hasConceptScore W3158243908C158693339 @default.
- W3158243908 hasConceptScore W3158243908C169391604 @default.
- W3158243908 hasConceptScore W3158243908C181104567 @default.
- W3158243908 hasConceptScore W3158243908C186450821 @default.