Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158324453> ?p ?o ?g. }
- W3158324453 abstract "Rare-earth doped nanoparticles (RENPs) have been widely used for anti-counterfeiting and security applications due to their light frequency conversion features: they are excited at one wavelength, and they display spectrally narrow and distinguished luminescence peaks either at shorter wavelengths (i.e., frequency/energy upconversion) or at longer wavelengths (frequency/energy downconversion). RENPs with a downconversion (DC) photoluminescence (PL) in short-wave infrared (SWIR) spectral range (~1,000–1,700 nm) have recently been introduced to anti-counterfeiting applications, allowing for multilevel protection based on PL imaging through opaque layers, due to a lesser scattering of SWIR PL emission. However, as the number and spectral positions of the discrete PL bands exhibited by rare-earth ions are well-known, it is feasible to replicate luminescence spectra from RENPs, which results in a limited anti-counterfeiting security. Alternatively, lifetime of PL from RENPs can be used for encoding, as it can be finely tuned in broad temporal range (i.e., from microseconds to milliseconds) by varying type of dopants and their content in RENPs, along with the nanoparticle morphology and size. Nevertheless, the current approach to decoding and imaging the RENP luminescence lifetimes requires multiple steps and is highly time-consuming, precluding practical applications of PL lifetime encoding for anti-counterfeiting. Herein, we report the use of a rapid lifetime determination (RLD) technique to overcome this issue and introduce real-time imaging of SWIR PL lifetime for anti-counterfeiting applications. NaYF 4 :20% Yb, x% Er (x = 0, 2, 20, 80)@NaYF 4 core@shell RENPs were synthesized and characterized, revealing DC PL in SWIR region, with maximum at ~1,530 nm and PL lifetimes ranging from 3.2 to 6 ms. Imaging of the nanoparticles with different lifetimes was performed by the developed time-gated imaging system engaging RLD method and the precise manipulation of the delay between the excitation pulses and camera gating windows. Moreover, it is shown that imaging and decrypting can be performed at a high rate (3–4 fps) in a cyclic manner, thus allowing for real-time temporal decoding. We believe that the demonstrated RLD-based fast PL lifetime imaging approach can be employed in other applications of photoluminescent RENPs." @default.
- W3158324453 created "2021-05-10" @default.
- W3158324453 creator A5012020083 @default.
- W3158324453 creator A5038645053 @default.
- W3158324453 creator A5055592871 @default.
- W3158324453 creator A5065859286 @default.
- W3158324453 creator A5074655512 @default.
- W3158324453 creator A5077366944 @default.
- W3158324453 date "2021-04-26" @default.
- W3158324453 modified "2023-10-13" @default.
- W3158324453 title "Real-Time Imaging of Short-Wave Infrared Luminescence Lifetimes for Anti-counterfeiting Applications" @default.
- W3158324453 cites W1975979713 @default.
- W3158324453 cites W1988000218 @default.
- W3158324453 cites W2000213035 @default.
- W3158324453 cites W2001819366 @default.
- W3158324453 cites W2009985773 @default.
- W3158324453 cites W2032817070 @default.
- W3158324453 cites W2034357208 @default.
- W3158324453 cites W2045951065 @default.
- W3158324453 cites W2055480636 @default.
- W3158324453 cites W2064802772 @default.
- W3158324453 cites W2078905517 @default.
- W3158324453 cites W2080508255 @default.
- W3158324453 cites W2085362809 @default.
- W3158324453 cites W2094392916 @default.
- W3158324453 cites W2148293218 @default.
- W3158324453 cites W2155339112 @default.
- W3158324453 cites W2296512364 @default.
- W3158324453 cites W2313936689 @default.
- W3158324453 cites W2343098831 @default.
- W3158324453 cites W2524352079 @default.
- W3158324453 cites W2585775672 @default.
- W3158324453 cites W2604248315 @default.
- W3158324453 cites W2762358200 @default.
- W3158324453 cites W2775395794 @default.
- W3158324453 cites W2796762905 @default.
- W3158324453 cites W2801474215 @default.
- W3158324453 cites W2807989822 @default.
- W3158324453 cites W2883852594 @default.
- W3158324453 cites W2887281330 @default.
- W3158324453 cites W2887981390 @default.
- W3158324453 cites W2905296453 @default.
- W3158324453 cites W2925191756 @default.
- W3158324453 cites W2928188007 @default.
- W3158324453 cites W2937901986 @default.
- W3158324453 cites W2944997727 @default.
- W3158324453 cites W2947990507 @default.
- W3158324453 cites W2954129542 @default.
- W3158324453 cites W2993346437 @default.
- W3158324453 cites W3011579079 @default.
- W3158324453 cites W3034542955 @default.
- W3158324453 cites W3082485033 @default.
- W3158324453 cites W3092000993 @default.
- W3158324453 cites W3093442257 @default.
- W3158324453 cites W3093781512 @default.
- W3158324453 doi "https://doi.org/10.3389/fchem.2021.659553" @default.
- W3158324453 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8107396" @default.
- W3158324453 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33981673" @default.
- W3158324453 hasPublicationYear "2021" @default.
- W3158324453 type Work @default.
- W3158324453 sameAs 3158324453 @default.
- W3158324453 citedByCount "10" @default.
- W3158324453 countsByYear W31583244532021 @default.
- W3158324453 countsByYear W31583244532022 @default.
- W3158324453 countsByYear W31583244532023 @default.
- W3158324453 crossrefType "journal-article" @default.
- W3158324453 hasAuthorship W3158324453A5012020083 @default.
- W3158324453 hasAuthorship W3158324453A5038645053 @default.
- W3158324453 hasAuthorship W3158324453A5055592871 @default.
- W3158324453 hasAuthorship W3158324453A5065859286 @default.
- W3158324453 hasAuthorship W3158324453A5074655512 @default.
- W3158324453 hasAuthorship W3158324453A5077366944 @default.
- W3158324453 hasBestOaLocation W31583244531 @default.
- W3158324453 hasConcept C11630735 @default.
- W3158324453 hasConcept C120665830 @default.
- W3158324453 hasConcept C121332964 @default.
- W3158324453 hasConcept C148869448 @default.
- W3158324453 hasConcept C158355884 @default.
- W3158324453 hasConcept C191952053 @default.
- W3158324453 hasConcept C192562407 @default.
- W3158324453 hasConcept C2779884411 @default.
- W3158324453 hasConcept C2911072751 @default.
- W3158324453 hasConcept C34742353 @default.
- W3158324453 hasConcept C49040817 @default.
- W3158324453 hasConcept C57863236 @default.
- W3158324453 hasConcept C60056205 @default.
- W3158324453 hasConcept C6260449 @default.
- W3158324453 hasConcept C85080765 @default.
- W3158324453 hasConcept C91881484 @default.
- W3158324453 hasConceptScore W3158324453C11630735 @default.
- W3158324453 hasConceptScore W3158324453C120665830 @default.
- W3158324453 hasConceptScore W3158324453C121332964 @default.
- W3158324453 hasConceptScore W3158324453C148869448 @default.
- W3158324453 hasConceptScore W3158324453C158355884 @default.
- W3158324453 hasConceptScore W3158324453C191952053 @default.
- W3158324453 hasConceptScore W3158324453C192562407 @default.
- W3158324453 hasConceptScore W3158324453C2779884411 @default.
- W3158324453 hasConceptScore W3158324453C2911072751 @default.
- W3158324453 hasConceptScore W3158324453C34742353 @default.
- W3158324453 hasConceptScore W3158324453C49040817 @default.