Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158443234> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3158443234 endingPage "2455" @default.
- W3158443234 startingPage "2441" @default.
- W3158443234 abstract "The economy of a country largely depends on its agricultural productivity. Hence, identification of plant leaf diseases plays a vital role in the field of agriculture. In this research, we propose a novel framework for the automatic detection of plant leaf disease based on Deep Convolutional Neural Network (DCNN) architecture. The proposed framework involves steps like image restoration, enhancement, clustering, thresholding and classification. The image restoration is performed using a novel filter called 2D Adaptive Hybrid Bilateral Anisotropic Diffusion Filter (2D–AHBAD). This filter is used for the elimination of various noise such as salt and pepper noise, Gaussian noise, random noise, thermal noise, speckle noise etc. Image enhancement is done using Edge Preservation–Modified Histogram Contrast Brightness Equalization (EP-MHCBE) algorithm. The enhanced images are then segmented using clustering and thresholding algorithms. A new technique called Hybrid Fast Fuzzy C Means Improved Expectation Maximization (HFFCM IEM) Clustering technique was used for the computation of clusters. The generated clusters are then segmented based on the Iterative Mean Shift Thresholding (IMST) algorithm. The segmented images are classified using DCNN architecture. A total of 2000 images are used in this framework out of which 1600 images were utilized for training the DCNN architecture. The remaining 400 images were used for testing. The leaf images are categorized into four categories namely, normal, mild, moderate and severe. It was inferred that the proposed AHBAD image restoration algorithm achieved a high PSNR of 54 and very low MSE of 0.0039. Similarly, the proposed DCNN classification system attained a high classification accuracy of 92.25%." @default.
- W3158443234 created "2021-05-10" @default.
- W3158443234 creator A5008094760 @default.
- W3158443234 date "2021-04-28" @default.
- W3158443234 modified "2023-09-26" @default.
- W3158443234 title "A Novel Framework For Automatic Detection Of Plant Leaf Disease Using 2d-Deep Convolutional Neural Network Architecture" @default.
- W3158443234 cites W2786538427 @default.
- W3158443234 cites W2901380936 @default.
- W3158443234 cites W2911433502 @default.
- W3158443234 cites W2937035224 @default.
- W3158443234 cites W2938959907 @default.
- W3158443234 cites W2941832033 @default.
- W3158443234 cites W2982381523 @default.
- W3158443234 cites W2987984071 @default.
- W3158443234 cites W2999570407 @default.
- W3158443234 cites W3004100671 @default.
- W3158443234 cites W3016786410 @default.
- W3158443234 cites W3111432325 @default.
- W3158443234 doi "https://doi.org/10.17762/turcomat.v12i10.4855" @default.
- W3158443234 hasPublicationYear "2021" @default.
- W3158443234 type Work @default.
- W3158443234 sameAs 3158443234 @default.
- W3158443234 citedByCount "0" @default.
- W3158443234 crossrefType "journal-article" @default.
- W3158443234 hasAuthorship W3158443234A5008094760 @default.
- W3158443234 hasConcept C115961682 @default.
- W3158443234 hasConcept C124504099 @default.
- W3158443234 hasConcept C153180895 @default.
- W3158443234 hasConcept C154945302 @default.
- W3158443234 hasConcept C191178318 @default.
- W3158443234 hasConcept C31972630 @default.
- W3158443234 hasConcept C41008148 @default.
- W3158443234 hasConcept C81363708 @default.
- W3158443234 hasConcept C89600930 @default.
- W3158443234 hasConcept C99498987 @default.
- W3158443234 hasConceptScore W3158443234C115961682 @default.
- W3158443234 hasConceptScore W3158443234C124504099 @default.
- W3158443234 hasConceptScore W3158443234C153180895 @default.
- W3158443234 hasConceptScore W3158443234C154945302 @default.
- W3158443234 hasConceptScore W3158443234C191178318 @default.
- W3158443234 hasConceptScore W3158443234C31972630 @default.
- W3158443234 hasConceptScore W3158443234C41008148 @default.
- W3158443234 hasConceptScore W3158443234C81363708 @default.
- W3158443234 hasConceptScore W3158443234C89600930 @default.
- W3158443234 hasConceptScore W3158443234C99498987 @default.
- W3158443234 hasIssue "10" @default.
- W3158443234 hasLocation W31584432341 @default.
- W3158443234 hasOpenAccess W3158443234 @default.
- W3158443234 hasPrimaryLocation W31584432341 @default.
- W3158443234 hasRelatedWork W1037978 @default.
- W3158443234 hasRelatedWork W1572751929 @default.
- W3158443234 hasRelatedWork W1586792907 @default.
- W3158443234 hasRelatedWork W1996576024 @default.
- W3158443234 hasRelatedWork W2121970729 @default.
- W3158443234 hasRelatedWork W2147700833 @default.
- W3158443234 hasRelatedWork W2290286172 @default.
- W3158443234 hasRelatedWork W2313572896 @default.
- W3158443234 hasRelatedWork W2347977839 @default.
- W3158443234 hasRelatedWork W2380643510 @default.
- W3158443234 hasRelatedWork W2518516551 @default.
- W3158443234 hasRelatedWork W2761548665 @default.
- W3158443234 hasRelatedWork W2791148009 @default.
- W3158443234 hasRelatedWork W2897151486 @default.
- W3158443234 hasRelatedWork W2954221940 @default.
- W3158443234 hasRelatedWork W2970901259 @default.
- W3158443234 hasRelatedWork W3027101760 @default.
- W3158443234 hasRelatedWork W3083219216 @default.
- W3158443234 hasRelatedWork W3162530581 @default.
- W3158443234 hasRelatedWork W2553220520 @default.
- W3158443234 hasVolume "12" @default.
- W3158443234 isParatext "false" @default.
- W3158443234 isRetracted "false" @default.
- W3158443234 magId "3158443234" @default.
- W3158443234 workType "article" @default.