Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158528237> ?p ?o ?g. }
- W3158528237 abstract "Understanding human driving behaviors quantitatively is critical even in the era when connected and autonomous vehicles and smart infrastructure are becoming ever more prevalent. This is particularly so as that mixed traffic settings, where autonomous vehicles and human driven vehicles co-exist, are expected to persist for quite some time. Towards this end it is necessary that we have a comprehensive modeling framework for decision-making within which human driving preferences can be inferred statistically from observed driving behaviors in realistic and naturalistic traffic settings. Leveraging a recently proposed computational framework for smart vehicles in a smart world using multi-agent based simulation and optimization, we first recapitulate how the forward problem of driving decision-making is modeled as a state space model. We then show how the model can be inverted to estimate driver preferences from naturalistic traffic data using the standard Kalman filter technique. We explicitly illustrate our approach using the vehicle trajectory data from Sugiyama experiment that was originally meant to demonstrate how stop-and-go shockwave can arise spontaneously without bottlenecks. Not only the estimated state filter can fit the observed data well for each individual vehicle, the inferred utility functions can also re-produce quantitatively similar pattern of the observed collective behaviors. One distinct advantage of our approach is the drastically reduced computational burden. This is possible because our forward model treats driving decision process, which is intrinsically dynamic with multi-agent interactions, as a sequence of independent static optimization problems contingent on the state with a finite look ahead anticipation. Consequently we can practically sidestep solving an interacting dynamic inversion problem that would have been much more computationally demanding." @default.
- W3158528237 created "2021-05-10" @default.
- W3158528237 creator A5015550681 @default.
- W3158528237 creator A5026486368 @default.
- W3158528237 creator A5034925826 @default.
- W3158528237 creator A5059809752 @default.
- W3158528237 creator A5086340418 @default.
- W3158528237 date "2021-05-04" @default.
- W3158528237 modified "2023-10-08" @default.
- W3158528237 title "Calibration of Human Driving Behavior and Preference Using Naturalistic Traffic Data" @default.
- W3158528237 cites W1527702126 @default.
- W3158528237 cites W1544016679 @default.
- W3158528237 cites W1559990548 @default.
- W3158528237 cites W1591675293 @default.
- W3158528237 cites W1777239053 @default.
- W3158528237 cites W1801976851 @default.
- W3158528237 cites W1970916399 @default.
- W3158528237 cites W1991256353 @default.
- W3158528237 cites W1996341585 @default.
- W3158528237 cites W1999874108 @default.
- W3158528237 cites W2008102069 @default.
- W3158528237 cites W2061562262 @default.
- W3158528237 cites W2078586423 @default.
- W3158528237 cites W2098774185 @default.
- W3158528237 cites W2133500732 @default.
- W3158528237 cites W2147544021 @default.
- W3158528237 cites W2181849516 @default.
- W3158528237 cites W2342580619 @default.
- W3158528237 cites W2604670963 @default.
- W3158528237 cites W2611350544 @default.
- W3158528237 cites W2626702320 @default.
- W3158528237 cites W2744369598 @default.
- W3158528237 cites W2757337920 @default.
- W3158528237 cites W2891385160 @default.
- W3158528237 cites W2896642734 @default.
- W3158528237 cites W2963590100 @default.
- W3158528237 cites W2963787234 @default.
- W3158528237 cites W2980087597 @default.
- W3158528237 cites W2990116160 @default.
- W3158528237 cites W3004028143 @default.
- W3158528237 cites W3037606473 @default.
- W3158528237 cites W3040858909 @default.
- W3158528237 cites W3089317590 @default.
- W3158528237 cites W3091165146 @default.
- W3158528237 cites W3092192320 @default.
- W3158528237 cites W3104181348 @default.
- W3158528237 cites W3144867668 @default.
- W3158528237 cites W3150195918 @default.
- W3158528237 doi "https://doi.org/10.48550/arxiv.2105.01820" @default.
- W3158528237 hasPublicationYear "2021" @default.
- W3158528237 type Work @default.
- W3158528237 sameAs 3158528237 @default.
- W3158528237 citedByCount "0" @default.
- W3158528237 crossrefType "posted-content" @default.
- W3158528237 hasAuthorship W3158528237A5015550681 @default.
- W3158528237 hasAuthorship W3158528237A5026486368 @default.
- W3158528237 hasAuthorship W3158528237A5034925826 @default.
- W3158528237 hasAuthorship W3158528237A5059809752 @default.
- W3158528237 hasAuthorship W3158528237A5086340418 @default.
- W3158528237 hasBestOaLocation W31585282371 @default.
- W3158528237 hasConcept C105795698 @default.
- W3158528237 hasConcept C106131492 @default.
- W3158528237 hasConcept C111919701 @default.
- W3158528237 hasConcept C11413529 @default.
- W3158528237 hasConcept C121332964 @default.
- W3158528237 hasConcept C1276947 @default.
- W3158528237 hasConcept C13662910 @default.
- W3158528237 hasConcept C154945302 @default.
- W3158528237 hasConcept C157286648 @default.
- W3158528237 hasConcept C176777502 @default.
- W3158528237 hasConcept C2778112365 @default.
- W3158528237 hasConcept C2781249084 @default.
- W3158528237 hasConcept C31972630 @default.
- W3158528237 hasConcept C33923547 @default.
- W3158528237 hasConcept C41008148 @default.
- W3158528237 hasConcept C48103436 @default.
- W3158528237 hasConcept C54355233 @default.
- W3158528237 hasConcept C72434380 @default.
- W3158528237 hasConcept C86803240 @default.
- W3158528237 hasConcept C98045186 @default.
- W3158528237 hasConceptScore W3158528237C105795698 @default.
- W3158528237 hasConceptScore W3158528237C106131492 @default.
- W3158528237 hasConceptScore W3158528237C111919701 @default.
- W3158528237 hasConceptScore W3158528237C11413529 @default.
- W3158528237 hasConceptScore W3158528237C121332964 @default.
- W3158528237 hasConceptScore W3158528237C1276947 @default.
- W3158528237 hasConceptScore W3158528237C13662910 @default.
- W3158528237 hasConceptScore W3158528237C154945302 @default.
- W3158528237 hasConceptScore W3158528237C157286648 @default.
- W3158528237 hasConceptScore W3158528237C176777502 @default.
- W3158528237 hasConceptScore W3158528237C2778112365 @default.
- W3158528237 hasConceptScore W3158528237C2781249084 @default.
- W3158528237 hasConceptScore W3158528237C31972630 @default.
- W3158528237 hasConceptScore W3158528237C33923547 @default.
- W3158528237 hasConceptScore W3158528237C41008148 @default.
- W3158528237 hasConceptScore W3158528237C48103436 @default.
- W3158528237 hasConceptScore W3158528237C54355233 @default.
- W3158528237 hasConceptScore W3158528237C72434380 @default.
- W3158528237 hasConceptScore W3158528237C86803240 @default.
- W3158528237 hasConceptScore W3158528237C98045186 @default.