Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158530807> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3158530807 endingPage "279" @default.
- W3158530807 startingPage "262" @default.
- W3158530807 abstract "Since Academic institutions contain huge volume of data regarding students such as academic scores, scores in co and extracurricular activities, family annual income, family background and other supporting documents, predicting individual students performance in all aspects manually is a difficult task. The proposed work uses data mining techniques to identify students who are eligible for scholarships and other benefits. Students are classified into different categories by means of academic, behavior, extra and co-curricular activities. Machine Learning algorithms such as Naive Bayes, Decision Tree Classifier and Support Vector Machine are used for predicting the performance of the student. With the help of this proposed model parents and instructors can monitor student’s performance and they can also provide essential technical and moral support. Also this helps in providing academic scholarship and training to the students to support them financially and to enrich their knowledge. It suggests the Academic Institutions to organize induction or training programmes at the beginning of the semester. Technical training, motivational talks, Yoga, etc are organized by the institutions by keeping in mind of students physical and mental health. Considering the e-learning platforms huge volumes of data and plethora of information are generated. In this work, various learning models are constructed and their accuracies are compared to analyse which algorithm out-performs." @default.
- W3158530807 created "2021-05-10" @default.
- W3158530807 creator A5037438315 @default.
- W3158530807 creator A5050460417 @default.
- W3158530807 creator A5052265414 @default.
- W3158530807 date "2021-04-29" @default.
- W3158530807 modified "2023-09-27" @default.
- W3158530807 title "Prediction of Students’ Performance based on Academic, Behaviour, Extra and Co-Curricular Activities" @default.
- W3158530807 doi "https://doi.org/10.14704/web/v18si01/web18058" @default.
- W3158530807 hasPublicationYear "2021" @default.
- W3158530807 type Work @default.
- W3158530807 sameAs 3158530807 @default.
- W3158530807 citedByCount "0" @default.
- W3158530807 crossrefType "journal-article" @default.
- W3158530807 hasAuthorship W3158530807A5037438315 @default.
- W3158530807 hasAuthorship W3158530807A5050460417 @default.
- W3158530807 hasAuthorship W3158530807A5052265414 @default.
- W3158530807 hasBestOaLocation W31585308071 @default.
- W3158530807 hasConcept C119857082 @default.
- W3158530807 hasConcept C12267149 @default.
- W3158530807 hasConcept C127413603 @default.
- W3158530807 hasConcept C145420912 @default.
- W3158530807 hasConcept C154945302 @default.
- W3158530807 hasConcept C15744967 @default.
- W3158530807 hasConcept C17744445 @default.
- W3158530807 hasConcept C199539241 @default.
- W3158530807 hasConcept C201995342 @default.
- W3158530807 hasConcept C2522767166 @default.
- W3158530807 hasConcept C2777598771 @default.
- W3158530807 hasConcept C2778061430 @default.
- W3158530807 hasConcept C2780451532 @default.
- W3158530807 hasConcept C41008148 @default.
- W3158530807 hasConcept C52001869 @default.
- W3158530807 hasConcept C84525736 @default.
- W3158530807 hasConceptScore W3158530807C119857082 @default.
- W3158530807 hasConceptScore W3158530807C12267149 @default.
- W3158530807 hasConceptScore W3158530807C127413603 @default.
- W3158530807 hasConceptScore W3158530807C145420912 @default.
- W3158530807 hasConceptScore W3158530807C154945302 @default.
- W3158530807 hasConceptScore W3158530807C15744967 @default.
- W3158530807 hasConceptScore W3158530807C17744445 @default.
- W3158530807 hasConceptScore W3158530807C199539241 @default.
- W3158530807 hasConceptScore W3158530807C201995342 @default.
- W3158530807 hasConceptScore W3158530807C2522767166 @default.
- W3158530807 hasConceptScore W3158530807C2777598771 @default.
- W3158530807 hasConceptScore W3158530807C2778061430 @default.
- W3158530807 hasConceptScore W3158530807C2780451532 @default.
- W3158530807 hasConceptScore W3158530807C41008148 @default.
- W3158530807 hasConceptScore W3158530807C52001869 @default.
- W3158530807 hasConceptScore W3158530807C84525736 @default.
- W3158530807 hasIssue "Special Issue 01" @default.
- W3158530807 hasLocation W31585308071 @default.
- W3158530807 hasOpenAccess W3158530807 @default.
- W3158530807 hasPrimaryLocation W31585308071 @default.
- W3158530807 hasRelatedWork W2595988085 @default.
- W3158530807 hasRelatedWork W2783049111 @default.
- W3158530807 hasRelatedWork W2995187730 @default.
- W3158530807 hasRelatedWork W3127425528 @default.
- W3158530807 hasRelatedWork W3143658565 @default.
- W3158530807 hasRelatedWork W3186233728 @default.
- W3158530807 hasRelatedWork W4205958290 @default.
- W3158530807 hasRelatedWork W4214820172 @default.
- W3158530807 hasRelatedWork W4283016678 @default.
- W3158530807 hasRelatedWork W4361795583 @default.
- W3158530807 hasVolume "18" @default.
- W3158530807 isParatext "false" @default.
- W3158530807 isRetracted "false" @default.
- W3158530807 magId "3158530807" @default.
- W3158530807 workType "article" @default.