Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158653447> ?p ?o ?g. }
- W3158653447 endingPage "129" @default.
- W3158653447 startingPage "120" @default.
- W3158653447 abstract "Background The interpretation of radiographs suffers from an ever-increasing workload in emergency and radiology departments, while missed fractures represent up to 80% of diagnostic errors in the emergency department. Purpose To assess the performance of an artificial intelligence (AI) system designed to aid radiologists and emergency physicians in the detection and localization of appendicular skeletal fractures. Materials and Methods The AI system was previously trained on 60 170 radiographs obtained in patients with trauma. The radiographs were randomly split into 70% training, 10% validation, and 20% test sets. Between 2016 and 2018, 600 adult patients in whom multiview radiographs had been obtained after a recent trauma, with or without one or more fractures of shoulder, arm, hand, pelvis, leg, and foot, were retrospectively included from 17 French medical centers. Radiographs with quality precluding human interpretation or containing only obvious fractures were excluded. Six radiologists and six emergency physicians were asked to detect and localize fractures with (n = 300) and fractures without (n = 300) the aid of software highlighting boxes around AI-detected fractures. Aided and unaided sensitivity, specificity, and reading times were compared by means of paired Student t tests after averaging of performances of each reader. Results A total of 600 patients (mean age ± standard deviation, 57 years ± 22; 358 women) were included. The AI aid improved the sensitivity of physicians by 8.7% (95% CI: 3.1, 14.2; P = .003 for superiority) and the specificity by 4.1% (95% CI: 0.5, 7.7; P < .001 for noninferiority) and reduced the average number of false-positive fractures per patient by 41.9% (95% CI: 12.8, 61.3; P = .02) in patients without fractures and the mean reading time by 15.0% (95% CI: –30.4, 3.8; P = .12). Finally, stand-alone performance of a newer release of the AI system was greater than that of all unaided readers, including skeletal expert radiologists, with an area under the receiver operating characteristic curve of 0.94 (95% CI: 0.92, 0.96). Conclusion The artificial intelligence aid provided a gain of sensitivity (8.7% increase) and specificity (4.1% increase) without loss of reading speed. © RSNA, 2021 Online supplemental material is available for this article." @default.
- W3158653447 created "2021-05-10" @default.
- W3158653447 creator A5006525026 @default.
- W3158653447 creator A5014567948 @default.
- W3158653447 creator A5017498751 @default.
- W3158653447 creator A5019638514 @default.
- W3158653447 creator A5034549468 @default.
- W3158653447 creator A5043623805 @default.
- W3158653447 creator A5044280341 @default.
- W3158653447 creator A5044320747 @default.
- W3158653447 creator A5046796537 @default.
- W3158653447 creator A5071592594 @default.
- W3158653447 creator A5081271444 @default.
- W3158653447 creator A5081743501 @default.
- W3158653447 creator A5084291094 @default.
- W3158653447 creator A5088957025 @default.
- W3158653447 date "2021-07-01" @default.
- W3158653447 modified "2023-10-10" @default.
- W3158653447 title "Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A Multicenter Cross-sectional Diagnostic Study" @default.
- W3158653447 cites W1502235192 @default.
- W3158653447 cites W1993129271 @default.
- W3158653447 cites W2030069582 @default.
- W3158653447 cites W2040834754 @default.
- W3158653447 cites W2060351513 @default.
- W3158653447 cites W2098543955 @default.
- W3158653447 cites W2149336171 @default.
- W3158653447 cites W2166507657 @default.
- W3158653447 cites W2559874490 @default.
- W3158653447 cites W2581082771 @default.
- W3158653447 cites W2612609033 @default.
- W3158653447 cites W2726408731 @default.
- W3158653447 cites W2776581140 @default.
- W3158653447 cites W2793251588 @default.
- W3158653447 cites W2884175539 @default.
- W3158653447 cites W2897228760 @default.
- W3158653447 cites W2899835486 @default.
- W3158653447 cites W2935090763 @default.
- W3158653447 cites W2940354300 @default.
- W3158653447 cites W2946485910 @default.
- W3158653447 cites W2955489580 @default.
- W3158653447 cites W2955604386 @default.
- W3158653447 cites W2963521553 @default.
- W3158653447 cites W2997449172 @default.
- W3158653447 cites W2998175747 @default.
- W3158653447 cites W3011921115 @default.
- W3158653447 doi "https://doi.org/10.1148/radiol.2021203886" @default.
- W3158653447 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33944629" @default.
- W3158653447 hasPublicationYear "2021" @default.
- W3158653447 type Work @default.
- W3158653447 sameAs 3158653447 @default.
- W3158653447 citedByCount "34" @default.
- W3158653447 countsByYear W31586534472021 @default.
- W3158653447 countsByYear W31586534472022 @default.
- W3158653447 countsByYear W31586534472023 @default.
- W3158653447 crossrefType "journal-article" @default.
- W3158653447 hasAuthorship W3158653447A5006525026 @default.
- W3158653447 hasAuthorship W3158653447A5014567948 @default.
- W3158653447 hasAuthorship W3158653447A5017498751 @default.
- W3158653447 hasAuthorship W3158653447A5019638514 @default.
- W3158653447 hasAuthorship W3158653447A5034549468 @default.
- W3158653447 hasAuthorship W3158653447A5043623805 @default.
- W3158653447 hasAuthorship W3158653447A5044280341 @default.
- W3158653447 hasAuthorship W3158653447A5044320747 @default.
- W3158653447 hasAuthorship W3158653447A5046796537 @default.
- W3158653447 hasAuthorship W3158653447A5071592594 @default.
- W3158653447 hasAuthorship W3158653447A5081271444 @default.
- W3158653447 hasAuthorship W3158653447A5081743501 @default.
- W3158653447 hasAuthorship W3158653447A5084291094 @default.
- W3158653447 hasAuthorship W3158653447A5088957025 @default.
- W3158653447 hasConcept C105702510 @default.
- W3158653447 hasConcept C111919701 @default.
- W3158653447 hasConcept C118552586 @default.
- W3158653447 hasConcept C126838900 @default.
- W3158653447 hasConcept C194828623 @default.
- W3158653447 hasConcept C2777120189 @default.
- W3158653447 hasConcept C2778357063 @default.
- W3158653447 hasConcept C2778476105 @default.
- W3158653447 hasConcept C2780359839 @default.
- W3158653447 hasConcept C2780724011 @default.
- W3158653447 hasConcept C3020132585 @default.
- W3158653447 hasConcept C36454342 @default.
- W3158653447 hasConcept C41008148 @default.
- W3158653447 hasConcept C71924100 @default.
- W3158653447 hasConceptScore W3158653447C105702510 @default.
- W3158653447 hasConceptScore W3158653447C111919701 @default.
- W3158653447 hasConceptScore W3158653447C118552586 @default.
- W3158653447 hasConceptScore W3158653447C126838900 @default.
- W3158653447 hasConceptScore W3158653447C194828623 @default.
- W3158653447 hasConceptScore W3158653447C2777120189 @default.
- W3158653447 hasConceptScore W3158653447C2778357063 @default.
- W3158653447 hasConceptScore W3158653447C2778476105 @default.
- W3158653447 hasConceptScore W3158653447C2780359839 @default.
- W3158653447 hasConceptScore W3158653447C2780724011 @default.
- W3158653447 hasConceptScore W3158653447C3020132585 @default.
- W3158653447 hasConceptScore W3158653447C36454342 @default.
- W3158653447 hasConceptScore W3158653447C41008148 @default.
- W3158653447 hasConceptScore W3158653447C71924100 @default.
- W3158653447 hasIssue "1" @default.