Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158654326> ?p ?o ?g. }
- W3158654326 endingPage "3879" @default.
- W3158654326 startingPage "3852" @default.
- W3158654326 abstract "A new class of link flooding attacks (LFA) can cut off internet connections of target links by employing legitimate flows to congest these without being detected. LFA is especially powerful in disrupting traffic in software-defined networks if the control channel is targeted. Most of the existing solutions work by conducting a deep packet-level inspection of the physical network links. Therefore these techniques incur a significant performance overhead, are reactive, and result in damage to the network before a delayed defense is mounted. Machine learning (ML) of captured network statistics is emerging as a promising, lightweight, and proactive solution to defend against LFA. In this paper, we propose a ML-based security framework, CyberPulse++, that utilizes a pretrained ML repository to test captured network statistics in real-time to detect abnormal path performance on network links. It effectively tackles several challenges faced by network security solutions such as the practicality of large-scale network-level monitoring and collection of network status information. The framework can use a wide variety of algorithms for training the ML repository and allows the analyst a birds-eye view by generating interactive graphs to investigate an attack in its ramp-up stage. An extensive evaluation demonstrates that the framework offers limited bandwidth and computational overhead in proactively detecting and defending against LFA in real-time." @default.
- W3158654326 created "2021-05-10" @default.
- W3158654326 creator A5024866294 @default.
- W3158654326 creator A5033269031 @default.
- W3158654326 creator A5055060253 @default.
- W3158654326 creator A5076869167 @default.
- W3158654326 creator A5087113285 @default.
- W3158654326 creator A5089006337 @default.
- W3158654326 date "2021-05-02" @default.
- W3158654326 modified "2023-10-16" @default.
- W3158654326 title "CyberPulse++: A machine learning‐based security framework for detecting link flooding attacks in software defined networks" @default.
- W3158654326 cites W114517082 @default.
- W3158654326 cites W1531996150 @default.
- W3158654326 cites W1587546357 @default.
- W3158654326 cites W1869854851 @default.
- W3158654326 cites W1924689489 @default.
- W3158654326 cites W1977177161 @default.
- W3158654326 cites W2027150172 @default.
- W3158654326 cites W2037026906 @default.
- W3158654326 cites W2037668591 @default.
- W3158654326 cites W2125283600 @default.
- W3158654326 cites W2140734251 @default.
- W3158654326 cites W2143022364 @default.
- W3158654326 cites W2160824842 @default.
- W3158654326 cites W2276629685 @default.
- W3158654326 cites W2346075874 @default.
- W3158654326 cites W2407346711 @default.
- W3158654326 cites W2567699270 @default.
- W3158654326 cites W2573541888 @default.
- W3158654326 cites W2586630065 @default.
- W3158654326 cites W2600778551 @default.
- W3158654326 cites W2612104483 @default.
- W3158654326 cites W2738679187 @default.
- W3158654326 cites W2751952590 @default.
- W3158654326 cites W2762715230 @default.
- W3158654326 cites W2783146946 @default.
- W3158654326 cites W2789780249 @default.
- W3158654326 cites W2791826644 @default.
- W3158654326 cites W2791979966 @default.
- W3158654326 cites W2793500577 @default.
- W3158654326 cites W2799835959 @default.
- W3158654326 cites W2804116849 @default.
- W3158654326 cites W2889867411 @default.
- W3158654326 cites W2893388915 @default.
- W3158654326 cites W2895348445 @default.
- W3158654326 cites W2899772603 @default.
- W3158654326 cites W2921237497 @default.
- W3158654326 cites W3045737482 @default.
- W3158654326 cites W3127773598 @default.
- W3158654326 cites W4212883601 @default.
- W3158654326 doi "https://doi.org/10.1002/int.22442" @default.
- W3158654326 hasPublicationYear "2021" @default.
- W3158654326 type Work @default.
- W3158654326 sameAs 3158654326 @default.
- W3158654326 citedByCount "9" @default.
- W3158654326 countsByYear W31586543262021 @default.
- W3158654326 countsByYear W31586543262022 @default.
- W3158654326 countsByYear W31586543262023 @default.
- W3158654326 crossrefType "journal-article" @default.
- W3158654326 hasAuthorship W3158654326A5024866294 @default.
- W3158654326 hasAuthorship W3158654326A5033269031 @default.
- W3158654326 hasAuthorship W3158654326A5055060253 @default.
- W3158654326 hasAuthorship W3158654326A5076869167 @default.
- W3158654326 hasAuthorship W3158654326A5087113285 @default.
- W3158654326 hasAuthorship W3158654326A5089006337 @default.
- W3158654326 hasBestOaLocation W31586543261 @default.
- W3158654326 hasConcept C110875604 @default.
- W3158654326 hasConcept C111919701 @default.
- W3158654326 hasConcept C119857082 @default.
- W3158654326 hasConcept C120314980 @default.
- W3158654326 hasConcept C136764020 @default.
- W3158654326 hasConcept C154945302 @default.
- W3158654326 hasConcept C15744967 @default.
- W3158654326 hasConcept C158379750 @default.
- W3158654326 hasConcept C182590292 @default.
- W3158654326 hasConcept C186594467 @default.
- W3158654326 hasConcept C2777212361 @default.
- W3158654326 hasConcept C2777904410 @default.
- W3158654326 hasConcept C2779960059 @default.
- W3158654326 hasConcept C31258907 @default.
- W3158654326 hasConcept C38652104 @default.
- W3158654326 hasConcept C41008148 @default.
- W3158654326 hasConcept C542102704 @default.
- W3158654326 hasConcept C77270119 @default.
- W3158654326 hasConceptScore W3158654326C110875604 @default.
- W3158654326 hasConceptScore W3158654326C111919701 @default.
- W3158654326 hasConceptScore W3158654326C119857082 @default.
- W3158654326 hasConceptScore W3158654326C120314980 @default.
- W3158654326 hasConceptScore W3158654326C136764020 @default.
- W3158654326 hasConceptScore W3158654326C154945302 @default.
- W3158654326 hasConceptScore W3158654326C15744967 @default.
- W3158654326 hasConceptScore W3158654326C158379750 @default.
- W3158654326 hasConceptScore W3158654326C182590292 @default.
- W3158654326 hasConceptScore W3158654326C186594467 @default.
- W3158654326 hasConceptScore W3158654326C2777212361 @default.
- W3158654326 hasConceptScore W3158654326C2777904410 @default.
- W3158654326 hasConceptScore W3158654326C2779960059 @default.
- W3158654326 hasConceptScore W3158654326C31258907 @default.