Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158661206> ?p ?o ?g. }
- W3158661206 abstract "Purpose The aim of this study is to evaluate Big Data Analytics (BDA) drivers in the context of food supply chains (FSC) for transition to a Circular Economy (CE) and Sustainable Operations Management (SOM). Design/methodology/approach Ten different BDA drivers in FSC are examined for transition to CE; these are Supply Chains (SC) Visibility, Operations Efficiency, Information Management and Technology, Collaborations between SC partners, Data-driven innovation, Demand management and Production Planning, Talent Management, Organizational Commitment, Management Team Capability and Governmental Incentive. An interpretive structural modelling (ISM) methodology is used to indicate the relationships between identified drivers to stimulate transition to CE and SOM. Drivers and pair-wise interactions between these drivers are developed by semi-structured interviews with a number of experts from industry and academia. Findings The results show that Information Management and Technology, Governmental Incentive and Management Team Capability drivers are classified as independent factors; Organizational Commitment and Operations Efficiency are categorized as dependent factors. SC Visibility, Data-driven innovation, Demand management and Production Planning, Talent Management and Collaborations between SC partners can be classified as linkage factors. It can be concluded that Governmental Incentive is the most fundamental driver to achieve BDA applications in FSC transition from linearity to CE and SOM. In addition, Operations Efficiency, Collaborations between SC partners and Organizational Commitment are key BDA drivers in FSC for transition to CE and SOM. Research limitations/implications The interactions between these drivers will provide benefits to both industry and academia in prioritizing and understanding these drivers more thoroughly when implementing BDA based on a range of factors. This study will provide valuable insights. The results from this study will help in drawing up regulations to prevent food fraud, implementing laws concerning government incentives, reducing food loss and waste, increasing tracing and traceability, providing training activities to improve knowledge about BDA and focusing more on data analytics. Originality/value The main contribution of the study is to analyze BDA drivers in the context of FSC for transition to CE and SOM. This study is unique in examining these BDA drivers based on FSC. We hope to find sustainable solutions to minimize losses or other negative impacts on these SC." @default.
- W3158661206 created "2021-05-10" @default.
- W3158661206 creator A5022742623 @default.
- W3158661206 creator A5030077414 @default.
- W3158661206 creator A5054694767 @default.
- W3158661206 creator A5077893005 @default.
- W3158661206 creator A5082043453 @default.
- W3158661206 date "2021-04-29" @default.
- W3158661206 modified "2023-10-17" @default.
- W3158661206 title "Drivers of implementing Big Data Analytics in food supply chains for transition to a circular economy and sustainable operations management" @default.
- W3158661206 cites W1913502856 @default.
- W3158661206 cites W2091055210 @default.
- W3158661206 cites W2120606652 @default.
- W3158661206 cites W2182784059 @default.
- W3158661206 cites W2339203277 @default.
- W3158661206 cites W2508962850 @default.
- W3158661206 cites W2522601686 @default.
- W3158661206 cites W2522997770 @default.
- W3158661206 cites W2569486666 @default.
- W3158661206 cites W2593178874 @default.
- W3158661206 cites W2641417830 @default.
- W3158661206 cites W2685621902 @default.
- W3158661206 cites W2728975105 @default.
- W3158661206 cites W2734567864 @default.
- W3158661206 cites W2750986197 @default.
- W3158661206 cites W2761140038 @default.
- W3158661206 cites W2765929016 @default.
- W3158661206 cites W2789376992 @default.
- W3158661206 cites W2793124165 @default.
- W3158661206 cites W2793680687 @default.
- W3158661206 cites W2802265855 @default.
- W3158661206 cites W2805914821 @default.
- W3158661206 cites W2808783403 @default.
- W3158661206 cites W2810256317 @default.
- W3158661206 cites W2884262578 @default.
- W3158661206 cites W2885508271 @default.
- W3158661206 cites W2885604903 @default.
- W3158661206 cites W2898069736 @default.
- W3158661206 cites W2898814990 @default.
- W3158661206 cites W2912657399 @default.
- W3158661206 cites W2922496127 @default.
- W3158661206 cites W2925326639 @default.
- W3158661206 cites W2941749592 @default.
- W3158661206 cites W2955233081 @default.
- W3158661206 cites W2955285339 @default.
- W3158661206 cites W2956412213 @default.
- W3158661206 cites W2958509344 @default.
- W3158661206 cites W2976271486 @default.
- W3158661206 cites W2976625797 @default.
- W3158661206 cites W2977992592 @default.
- W3158661206 cites W2983983697 @default.
- W3158661206 cites W2990392194 @default.
- W3158661206 cites W2991373703 @default.
- W3158661206 cites W2994555613 @default.
- W3158661206 cites W2998171995 @default.
- W3158661206 cites W3004424409 @default.
- W3158661206 cites W3009525013 @default.
- W3158661206 cites W3012069023 @default.
- W3158661206 cites W3014195252 @default.
- W3158661206 cites W3015001973 @default.
- W3158661206 cites W3029547120 @default.
- W3158661206 cites W3035952359 @default.
- W3158661206 cites W3037393686 @default.
- W3158661206 cites W3038455398 @default.
- W3158661206 cites W3038825507 @default.
- W3158661206 cites W3040624228 @default.
- W3158661206 cites W3041340349 @default.
- W3158661206 cites W3042033439 @default.
- W3158661206 cites W3043722067 @default.
- W3158661206 cites W3043957417 @default.
- W3158661206 cites W3044265710 @default.
- W3158661206 cites W3044708354 @default.
- W3158661206 cites W3048026652 @default.
- W3158661206 cites W3054964350 @default.
- W3158661206 cites W3077615448 @default.
- W3158661206 cites W3080285115 @default.
- W3158661206 cites W3083188362 @default.
- W3158661206 cites W3084078201 @default.
- W3158661206 cites W3096094736 @default.
- W3158661206 cites W3096951630 @default.
- W3158661206 cites W3097309336 @default.
- W3158661206 cites W3106877117 @default.
- W3158661206 cites W3107411582 @default.
- W3158661206 cites W3111165818 @default.
- W3158661206 cites W3111991877 @default.
- W3158661206 cites W3112187590 @default.
- W3158661206 cites W3112761867 @default.
- W3158661206 cites W3127929858 @default.
- W3158661206 doi "https://doi.org/10.1108/jeim-12-2020-0521" @default.
- W3158661206 hasPublicationYear "2021" @default.
- W3158661206 type Work @default.
- W3158661206 sameAs 3158661206 @default.
- W3158661206 citedByCount "35" @default.
- W3158661206 countsByYear W31586612062021 @default.
- W3158661206 countsByYear W31586612062022 @default.
- W3158661206 countsByYear W31586612062023 @default.
- W3158661206 crossrefType "journal-article" @default.
- W3158661206 hasAuthorship W3158661206A5022742623 @default.
- W3158661206 hasAuthorship W3158661206A5030077414 @default.
- W3158661206 hasAuthorship W3158661206A5054694767 @default.