Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158688591> ?p ?o ?g. }
- W3158688591 endingPage "8633" @default.
- W3158688591 startingPage "8617" @default.
- W3158688591 abstract "The vanadium redox flow battery (VRFB) is one of the promising large-scale energy storage technologies. The electrode is one of the key components of the VRFB, and its design has an important effect on its electrochemical redox kinetics and battery performance. The ideal VRFB electrode material has high catalytic activity, good conductivity, and high stability. Carbon-based electrodes are the most commonly used electrode materials for VRFBs. However, its reaction kinetics and catalytic active sites are low. This paper summarizes the methods of carbon-based electrode modification of the electrochemical performance in VRFBs. Three representative methods including metal/metal oxide modification, nonmetal atom modification, and defect engineering for graphite felt in VRFBs are generally reviewed. First, metal and metal oxides have high catalytic activity, which can enhance the chemical reaction process of vanadium ions and greatly improve the reversibility of the redox reaction of vanadium ions. Then, nonmetal atom modification can generally improve the hydrophilicity of carbon-based electrodes, enhance the adsorption/desorption capacity of vanadium ions, and improve the reaction kinetics. Moreover, defect engineering can lead to the formation of the micropore structure on the surface and increase the specific surface area of the material, thus generating more redox reaction active sites. Finally, the development direction of electrode modification in VRFBs is prospected, and it is expected that this review will provide useful insights into the development of VRFBs." @default.
- W3158688591 created "2021-05-10" @default.
- W3158688591 creator A5009407777 @default.
- W3158688591 creator A5029154538 @default.
- W3158688591 creator A5040257557 @default.
- W3158688591 creator A5042902756 @default.
- W3158688591 creator A5058805353 @default.
- W3158688591 date "2021-05-04" @default.
- W3158688591 modified "2023-10-03" @default.
- W3158688591 title "Surface Modification of Carbon-Based Electrodes for Vanadium Redox Flow Batteries" @default.
- W3158688591 cites W1018629364 @default.
- W3158688591 cites W1906560025 @default.
- W3158688591 cites W1971868223 @default.
- W3158688591 cites W1977797511 @default.
- W3158688591 cites W1987251278 @default.
- W3158688591 cites W1989470795 @default.
- W3158688591 cites W2000110850 @default.
- W3158688591 cites W2002934647 @default.
- W3158688591 cites W2003252187 @default.
- W3158688591 cites W2013842889 @default.
- W3158688591 cites W2015960840 @default.
- W3158688591 cites W2029310673 @default.
- W3158688591 cites W2047188954 @default.
- W3158688591 cites W2050131367 @default.
- W3158688591 cites W2050993053 @default.
- W3158688591 cites W2052748944 @default.
- W3158688591 cites W2055508417 @default.
- W3158688591 cites W2063795764 @default.
- W3158688591 cites W2067936194 @default.
- W3158688591 cites W2071788285 @default.
- W3158688591 cites W2075853414 @default.
- W3158688591 cites W2083290165 @default.
- W3158688591 cites W2110450628 @default.
- W3158688591 cites W2116754688 @default.
- W3158688591 cites W2123169497 @default.
- W3158688591 cites W2126539454 @default.
- W3158688591 cites W2155399117 @default.
- W3158688591 cites W2203153737 @default.
- W3158688591 cites W2263376407 @default.
- W3158688591 cites W2314684688 @default.
- W3158688591 cites W2387769517 @default.
- W3158688591 cites W2402661663 @default.
- W3158688591 cites W2417570910 @default.
- W3158688591 cites W2472337040 @default.
- W3158688591 cites W2472870492 @default.
- W3158688591 cites W2498164351 @default.
- W3158688591 cites W2509698316 @default.
- W3158688591 cites W2514773433 @default.
- W3158688591 cites W2517400839 @default.
- W3158688591 cites W2546770442 @default.
- W3158688591 cites W2552766389 @default.
- W3158688591 cites W2564800237 @default.
- W3158688591 cites W2567521998 @default.
- W3158688591 cites W2570737121 @default.
- W3158688591 cites W2571503343 @default.
- W3158688591 cites W2575537758 @default.
- W3158688591 cites W2607753532 @default.
- W3158688591 cites W2612412429 @default.
- W3158688591 cites W2626993665 @default.
- W3158688591 cites W2734454486 @default.
- W3158688591 cites W2738544058 @default.
- W3158688591 cites W2745370886 @default.
- W3158688591 cites W2752318635 @default.
- W3158688591 cites W2771932843 @default.
- W3158688591 cites W2790668822 @default.
- W3158688591 cites W2791262936 @default.
- W3158688591 cites W2791809222 @default.
- W3158688591 cites W2792384842 @default.
- W3158688591 cites W2800379895 @default.
- W3158688591 cites W2802428081 @default.
- W3158688591 cites W2805067329 @default.
- W3158688591 cites W2808556316 @default.
- W3158688591 cites W2809925599 @default.
- W3158688591 cites W2884199078 @default.
- W3158688591 cites W2885688387 @default.
- W3158688591 cites W2891755258 @default.
- W3158688591 cites W2898577215 @default.
- W3158688591 cites W2899898980 @default.
- W3158688591 cites W2915351009 @default.
- W3158688591 cites W2922758193 @default.
- W3158688591 cites W2923943847 @default.
- W3158688591 cites W2924946653 @default.
- W3158688591 cites W2963458749 @default.
- W3158688591 cites W2963810096 @default.
- W3158688591 cites W2967212311 @default.
- W3158688591 cites W2968472505 @default.
- W3158688591 cites W2970254787 @default.
- W3158688591 cites W2998844323 @default.
- W3158688591 cites W3009458038 @default.
- W3158688591 cites W3010946444 @default.
- W3158688591 cites W3013655719 @default.
- W3158688591 cites W3065641376 @default.
- W3158688591 cites W3092889957 @default.
- W3158688591 cites W88932137 @default.
- W3158688591 doi "https://doi.org/10.1021/acs.energyfuels.1c00722" @default.
- W3158688591 hasPublicationYear "2021" @default.
- W3158688591 type Work @default.
- W3158688591 sameAs 3158688591 @default.