Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158694080> ?p ?o ?g. }
- W3158694080 endingPage "107044" @default.
- W3158694080 startingPage "107044" @default.
- W3158694080 abstract "This paper introduces three hybrid algorithms that help in solving global optimization problems using reinforcement learning along with metaheuristic methods. Using the algorithms presented, the search agents try to find a global optimum avoiding the local optima trap. Compared to the classical metaheuristic approaches, the proposed algorithms display higher success in finding new areas as well as exhibiting a more balanced performance while in the exploration and exploitation phases. The algorithms employ reinforcement agents to select an environment based on predefined actions and tasks. A reward and penalty system is used by the agents to discover the environment, done dynamically without following a predetermined model or method. The study makes use of Q-Learning method in all three metaheuristic algorithms, so-called RL I−GWO , RL Ex−GWO , and RL WOA algorithms, so as to check and control exploration and exploitation with Q-Table. The Q-Table values guide the search agents of the metaheuristic algorithms to select between the exploration and exploitation phases. A control mechanism is used to get the reward and penalty values for each action. The algorithms presented in this paper are simulated over 30 benchmark functions from CEC 2014, 2015 and the results obtained are compared with well-known metaheuristic and hybrid algorithms (GWO, RL GWO , I-GWO, Ex-GWO, and WOA). The proposed methods have also been applied to the inverse kinematics of the robot arms problem. The results of the used algorithms demonstrate that RL WOA provides better solutions for relevant problems. • Global optimization problems are generally NP-hard problem where metaheuristic algorithms find the optimal solution in the search space. • Reinforcement learning methods give high success rate in finding new global areas compared with metaheuristics and have a more balanced behavior. • Three metaheuristic-reinforcement learning hybrid algorithms are proposed switching between exploration and exploitation phases as and when needed making them more successful in finding better optimized solutions. • They have been applied over 30 benchmark functions and have been simulated to inverse kinematics of the robot arms problem." @default.
- W3158694080 created "2021-05-10" @default.
- W3158694080 creator A5004827476 @default.
- W3158694080 creator A5021063684 @default.
- W3158694080 creator A5030486802 @default.
- W3158694080 creator A5039614045 @default.
- W3158694080 creator A5047294045 @default.
- W3158694080 creator A5078155636 @default.
- W3158694080 date "2021-07-01" @default.
- W3158694080 modified "2023-10-17" @default.
- W3158694080 title "Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems" @default.
- W3158694080 cites W1993885071 @default.
- W3158694080 cites W1997600725 @default.
- W3158694080 cites W2015164669 @default.
- W3158694080 cites W2039568841 @default.
- W3158694080 cites W2061438946 @default.
- W3158694080 cites W2065401134 @default.
- W3158694080 cites W2067508429 @default.
- W3158694080 cites W2072955302 @default.
- W3158694080 cites W2083533909 @default.
- W3158694080 cites W2110250181 @default.
- W3158694080 cites W2111393363 @default.
- W3158694080 cites W2145602088 @default.
- W3158694080 cites W2151554678 @default.
- W3158694080 cites W2169934304 @default.
- W3158694080 cites W2187537484 @default.
- W3158694080 cites W2282282339 @default.
- W3158694080 cites W2287228090 @default.
- W3158694080 cites W2289326956 @default.
- W3158694080 cites W2290883490 @default.
- W3158694080 cites W2323882612 @default.
- W3158694080 cites W2559793483 @default.
- W3158694080 cites W2612473079 @default.
- W3158694080 cites W2742072653 @default.
- W3158694080 cites W2794711922 @default.
- W3158694080 cites W2803958211 @default.
- W3158694080 cites W2807841515 @default.
- W3158694080 cites W2903572049 @default.
- W3158694080 cites W2908286818 @default.
- W3158694080 cites W2910087204 @default.
- W3158694080 cites W2946092763 @default.
- W3158694080 cites W2957556486 @default.
- W3158694080 cites W2966057224 @default.
- W3158694080 cites W2969184652 @default.
- W3158694080 cites W2976560662 @default.
- W3158694080 cites W2980570898 @default.
- W3158694080 cites W2982561875 @default.
- W3158694080 cites W2984191725 @default.
- W3158694080 cites W3003100621 @default.
- W3158694080 cites W3006494982 @default.
- W3158694080 cites W3007317032 @default.
- W3158694080 cites W3012087746 @default.
- W3158694080 cites W3016693931 @default.
- W3158694080 cites W3092474652 @default.
- W3158694080 cites W4250503569 @default.
- W3158694080 doi "https://doi.org/10.1016/j.knosys.2021.107044" @default.
- W3158694080 hasPublicationYear "2021" @default.
- W3158694080 type Work @default.
- W3158694080 sameAs 3158694080 @default.
- W3158694080 citedByCount "51" @default.
- W3158694080 countsByYear W31586940802021 @default.
- W3158694080 countsByYear W31586940802022 @default.
- W3158694080 countsByYear W31586940802023 @default.
- W3158694080 crossrefType "journal-article" @default.
- W3158694080 hasAuthorship W3158694080A5004827476 @default.
- W3158694080 hasAuthorship W3158694080A5021063684 @default.
- W3158694080 hasAuthorship W3158694080A5030486802 @default.
- W3158694080 hasAuthorship W3158694080A5039614045 @default.
- W3158694080 hasAuthorship W3158694080A5047294045 @default.
- W3158694080 hasAuthorship W3158694080A5078155636 @default.
- W3158694080 hasConcept C109718341 @default.
- W3158694080 hasConcept C11413529 @default.
- W3158694080 hasConcept C126255220 @default.
- W3158694080 hasConcept C13280743 @default.
- W3158694080 hasConcept C154945302 @default.
- W3158694080 hasConcept C185798385 @default.
- W3158694080 hasConcept C205649164 @default.
- W3158694080 hasConcept C33923547 @default.
- W3158694080 hasConcept C41008148 @default.
- W3158694080 hasConcept C97541855 @default.
- W3158694080 hasConceptScore W3158694080C109718341 @default.
- W3158694080 hasConceptScore W3158694080C11413529 @default.
- W3158694080 hasConceptScore W3158694080C126255220 @default.
- W3158694080 hasConceptScore W3158694080C13280743 @default.
- W3158694080 hasConceptScore W3158694080C154945302 @default.
- W3158694080 hasConceptScore W3158694080C185798385 @default.
- W3158694080 hasConceptScore W3158694080C205649164 @default.
- W3158694080 hasConceptScore W3158694080C33923547 @default.
- W3158694080 hasConceptScore W3158694080C41008148 @default.
- W3158694080 hasConceptScore W3158694080C97541855 @default.
- W3158694080 hasLocation W31586940801 @default.
- W3158694080 hasOpenAccess W3158694080 @default.
- W3158694080 hasPrimaryLocation W31586940801 @default.
- W3158694080 hasRelatedWork W1975012108 @default.
- W3158694080 hasRelatedWork W2010496772 @default.
- W3158694080 hasRelatedWork W2075016777 @default.
- W3158694080 hasRelatedWork W2236369119 @default.
- W3158694080 hasRelatedWork W2761754749 @default.