Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158893497> ?p ?o ?g. }
- W3158893497 endingPage "919" @default.
- W3158893497 startingPage "897" @default.
- W3158893497 abstract "The automotive industry is facing a crucial time. The transformation from internal combustion engines to new electrical technologies requires enormous investment, and hence the IC engines are likely to serve as a means of transportation for the coming decades. The search for sustainable green alternative fuel and operating parameter optimization is a current feasible solution and is a critical issue among the scientific community. Engine experiments are complicated, costly, and time-consuming, especially when the global economy is drastically down due to the COVID-19 pandemic and putting the limitation of social distancing. Industries are looking for proven computational solutions to address these issues. Recently, artificial neural network has been proven beneficial in several areas of engineering to reduce the time and experimentation cost. The IC engine is one of them. ANN has been used to predict and analyze different characteristics such as performance, combustion, and emissions of the IC engine to save time and energy. The complex nature of ANN may lead to computation time, energy, and space. Recent studies are centered on changing the network topology, deep learning, and design of ANN to get the highest performance. The present study summarizes the application of ANN to predict and optimize the complicated characteristics of various types of engines with different fuels. The study aims to investigate the network topologies adopted to design the model and thereafter statistical evaluation of the developed ANN models. A comparison of the ANN model with other prediction models is also presented." @default.
- W3158893497 created "2021-05-10" @default.
- W3158893497 creator A5004601809 @default.
- W3158893497 creator A5026298406 @default.
- W3158893497 date "2021-05-03" @default.
- W3158893497 modified "2023-10-18" @default.
- W3158893497 title "Application of Artificial Neural Network for Internal Combustion Engines: A State of the Art Review" @default.
- W3158893497 cites W1454029275 @default.
- W3158893497 cites W1502056849 @default.
- W3158893497 cites W1963656272 @default.
- W3158893497 cites W1966072549 @default.
- W3158893497 cites W1967526040 @default.
- W3158893497 cites W1968445705 @default.
- W3158893497 cites W1969868418 @default.
- W3158893497 cites W1970214772 @default.
- W3158893497 cites W1974707715 @default.
- W3158893497 cites W1979203698 @default.
- W3158893497 cites W1979719437 @default.
- W3158893497 cites W1981240940 @default.
- W3158893497 cites W1987323548 @default.
- W3158893497 cites W1988783778 @default.
- W3158893497 cites W1989529680 @default.
- W3158893497 cites W1990166711 @default.
- W3158893497 cites W1991996283 @default.
- W3158893497 cites W1992674248 @default.
- W3158893497 cites W1993289980 @default.
- W3158893497 cites W1996038003 @default.
- W3158893497 cites W1996122683 @default.
- W3158893497 cites W2001270798 @default.
- W3158893497 cites W2010222480 @default.
- W3158893497 cites W2012982811 @default.
- W3158893497 cites W2013391942 @default.
- W3158893497 cites W2013611092 @default.
- W3158893497 cites W2015150103 @default.
- W3158893497 cites W2015330329 @default.
- W3158893497 cites W2017802565 @default.
- W3158893497 cites W2020205788 @default.
- W3158893497 cites W2022734549 @default.
- W3158893497 cites W2024620498 @default.
- W3158893497 cites W2025133626 @default.
- W3158893497 cites W2025659748 @default.
- W3158893497 cites W2026083729 @default.
- W3158893497 cites W2029199884 @default.
- W3158893497 cites W2032975675 @default.
- W3158893497 cites W2042460614 @default.
- W3158893497 cites W2043335995 @default.
- W3158893497 cites W2047755473 @default.
- W3158893497 cites W2049615494 @default.
- W3158893497 cites W2051264098 @default.
- W3158893497 cites W2056276376 @default.
- W3158893497 cites W2065293259 @default.
- W3158893497 cites W2065460153 @default.
- W3158893497 cites W2071587949 @default.
- W3158893497 cites W2072629689 @default.
- W3158893497 cites W2072674548 @default.
- W3158893497 cites W2076491552 @default.
- W3158893497 cites W2076829561 @default.
- W3158893497 cites W2085657532 @default.
- W3158893497 cites W2086879653 @default.
- W3158893497 cites W2088874310 @default.
- W3158893497 cites W2092939210 @default.
- W3158893497 cites W2098535269 @default.
- W3158893497 cites W2118922538 @default.
- W3158893497 cites W2155462680 @default.
- W3158893497 cites W2159785104 @default.
- W3158893497 cites W2170423728 @default.
- W3158893497 cites W2172463773 @default.
- W3158893497 cites W2195529590 @default.
- W3158893497 cites W2229007694 @default.
- W3158893497 cites W2231640202 @default.
- W3158893497 cites W2305569644 @default.
- W3158893497 cites W2346170315 @default.
- W3158893497 cites W2409625766 @default.
- W3158893497 cites W2464730650 @default.
- W3158893497 cites W2492698266 @default.
- W3158893497 cites W2511970834 @default.
- W3158893497 cites W2513017021 @default.
- W3158893497 cites W2552343211 @default.
- W3158893497 cites W2557177933 @default.
- W3158893497 cites W2563790762 @default.
- W3158893497 cites W2584566309 @default.
- W3158893497 cites W2589380014 @default.
- W3158893497 cites W2590805680 @default.
- W3158893497 cites W2594784870 @default.
- W3158893497 cites W2610857161 @default.
- W3158893497 cites W2614573013 @default.
- W3158893497 cites W2614767395 @default.
- W3158893497 cites W2738119689 @default.
- W3158893497 cites W2751826487 @default.
- W3158893497 cites W2766462814 @default.
- W3158893497 cites W2775349344 @default.
- W3158893497 cites W2779934828 @default.
- W3158893497 cites W2792592327 @default.
- W3158893497 cites W2795465283 @default.
- W3158893497 cites W2801954687 @default.
- W3158893497 cites W2802067151 @default.
- W3158893497 cites W2836549994 @default.
- W3158893497 cites W2870177129 @default.