Matches in SemOpenAlex for { <https://semopenalex.org/work/W3158974846> ?p ?o ?g. }
- W3158974846 abstract "Background The known primary radiological diagnosis of Chiari Malformation-I (CM-I) is based on the degree of tonsillar herniation (TH) below the Foramen Magnum (FM). However, recent data also shows the association of such malformation with smaller posterior cranial fossa (PCF) volume and the anatomical issues regarding the Odontoid. This study presents the achieved result regarding some detected potential radiological findings that may aid CM-I diagnosis using several machine learning (ML) algorithms. Materials and Methods Midsagittal T1-weighted MR images were collected in 241 adult patients diagnosed with CM, eleven morphometric measures of the posterior cerebral fossa were performed. Patients whose imaging was performed in the same centre and on the same device were included in the study. By matching age and gender, radiological exams of 100 clinically/radiologically proven symptomatic CM-I cases and 100 healthy controls were assessed. Eleven morphometric measures of the posterior cerebral fossa were examined using 5 designed ML algorithms. Results The mean age of patients was 29.92 ± 15.03 years. The primary presenting symptoms were headaches (62%). Syringomyelia and retrocurved-odontoid were detected in 34% and 8% of patients, respectively. All of the morphometric measures were significantly different between the groups, except for the distance from the dens axis to the posterior margin of FM. The Radom Forest model is found to have the best 1.0 (14 of 14) ratio of accuracy in regard to 14 different combinations of morphometric features. Conclusion Our study indicates the potential usefulness of ML-guided PCF measurements, other than TH, that may be used to predict and diagnose CM-I accurately. Combining two or three preferable osseous structure-based measurements may increase the accuracy of radiological diagnosis of CM-I." @default.
- W3158974846 created "2021-05-10" @default.
- W3158974846 creator A5015285551 @default.
- W3158974846 creator A5018340429 @default.
- W3158974846 creator A5023156168 @default.
- W3158974846 creator A5043171532 @default.
- W3158974846 creator A5049722480 @default.
- W3158974846 creator A5063260895 @default.
- W3158974846 creator A5076003312 @default.
- W3158974846 creator A5087260076 @default.
- W3158974846 date "2021-08-29" @default.
- W3158974846 modified "2023-10-16" @default.
- W3158974846 title "Multi‐parameter‐based radiological diagnosis of Chiari Malformation using Machine Learning Technology" @default.
- W3158974846 cites W1490499244 @default.
- W3158974846 cites W1504183939 @default.
- W3158974846 cites W2001572257 @default.
- W3158974846 cites W2017913262 @default.
- W3158974846 cites W2048250641 @default.
- W3158974846 cites W2070493638 @default.
- W3158974846 cites W2073981204 @default.
- W3158974846 cites W2083977203 @default.
- W3158974846 cites W2087055502 @default.
- W3158974846 cites W2101910462 @default.
- W3158974846 cites W2102443621 @default.
- W3158974846 cites W2126602013 @default.
- W3158974846 cites W2137915458 @default.
- W3158974846 cites W2140962446 @default.
- W3158974846 cites W2210642174 @default.
- W3158974846 cites W2254522477 @default.
- W3158974846 cites W2575228167 @default.
- W3158974846 cites W2589077241 @default.
- W3158974846 cites W2743680082 @default.
- W3158974846 cites W2766405473 @default.
- W3158974846 cites W2911964244 @default.
- W3158974846 cites W3025161810 @default.
- W3158974846 cites W3036888540 @default.
- W3158974846 cites W306918414 @default.
- W3158974846 cites W3102476541 @default.
- W3158974846 cites W3103312084 @default.
- W3158974846 doi "https://doi.org/10.1111/ijcp.14746" @default.
- W3158974846 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34428317" @default.
- W3158974846 hasPublicationYear "2021" @default.
- W3158974846 type Work @default.
- W3158974846 sameAs 3158974846 @default.
- W3158974846 citedByCount "2" @default.
- W3158974846 countsByYear W31589748462022 @default.
- W3158974846 crossrefType "journal-article" @default.
- W3158974846 hasAuthorship W3158974846A5015285551 @default.
- W3158974846 hasAuthorship W3158974846A5018340429 @default.
- W3158974846 hasAuthorship W3158974846A5023156168 @default.
- W3158974846 hasAuthorship W3158974846A5043171532 @default.
- W3158974846 hasAuthorship W3158974846A5049722480 @default.
- W3158974846 hasAuthorship W3158974846A5063260895 @default.
- W3158974846 hasAuthorship W3158974846A5076003312 @default.
- W3158974846 hasAuthorship W3158974846A5087260076 @default.
- W3158974846 hasBestOaLocation W31589748461 @default.
- W3158974846 hasConcept C126838900 @default.
- W3158974846 hasConcept C141071460 @default.
- W3158974846 hasConcept C143409427 @default.
- W3158974846 hasConcept C190892606 @default.
- W3158974846 hasConcept C2776106272 @default.
- W3158974846 hasConcept C2777836068 @default.
- W3158974846 hasConcept C2780696933 @default.
- W3158974846 hasConcept C2780966972 @default.
- W3158974846 hasConcept C2781149351 @default.
- W3158974846 hasConcept C2909349919 @default.
- W3158974846 hasConcept C2989005 @default.
- W3158974846 hasConcept C2993788527 @default.
- W3158974846 hasConcept C71924100 @default.
- W3158974846 hasConceptScore W3158974846C126838900 @default.
- W3158974846 hasConceptScore W3158974846C141071460 @default.
- W3158974846 hasConceptScore W3158974846C143409427 @default.
- W3158974846 hasConceptScore W3158974846C190892606 @default.
- W3158974846 hasConceptScore W3158974846C2776106272 @default.
- W3158974846 hasConceptScore W3158974846C2777836068 @default.
- W3158974846 hasConceptScore W3158974846C2780696933 @default.
- W3158974846 hasConceptScore W3158974846C2780966972 @default.
- W3158974846 hasConceptScore W3158974846C2781149351 @default.
- W3158974846 hasConceptScore W3158974846C2909349919 @default.
- W3158974846 hasConceptScore W3158974846C2989005 @default.
- W3158974846 hasConceptScore W3158974846C2993788527 @default.
- W3158974846 hasConceptScore W3158974846C71924100 @default.
- W3158974846 hasIssue "11" @default.
- W3158974846 hasLocation W31589748461 @default.
- W3158974846 hasLocation W31589748462 @default.
- W3158974846 hasLocation W31589748463 @default.
- W3158974846 hasOpenAccess W3158974846 @default.
- W3158974846 hasPrimaryLocation W31589748461 @default.
- W3158974846 hasRelatedWork W160695377 @default.
- W3158974846 hasRelatedWork W2035454878 @default.
- W3158974846 hasRelatedWork W2136669156 @default.
- W3158974846 hasRelatedWork W2168693697 @default.
- W3158974846 hasRelatedWork W2382174317 @default.
- W3158974846 hasRelatedWork W2411621632 @default.
- W3158974846 hasRelatedWork W2916030729 @default.
- W3158974846 hasRelatedWork W2972092196 @default.
- W3158974846 hasRelatedWork W3158974846 @default.
- W3158974846 hasRelatedWork W4236538130 @default.
- W3158974846 hasVolume "75" @default.
- W3158974846 isParatext "false" @default.