Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159031457> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3159031457 endingPage "195" @default.
- W3159031457 startingPage "183" @default.
- W3159031457 abstract "Student’s academic performance is one of the most important parameters for evaluating the standard of any institute. It has become a paramount importance for any institute to identify the student at risk of underperforming or failing or even drop out from the course. Machine Learning techniques may be used to develop a model for predicting student’s performance as early as at the time of admission. The task however is challenging as the educational data required to explore for modelling are usually imbalanced. We explore ensemble machine learning techniques namely bagging algorithm like random forest (rf) and boosting algorithms like adaptive boosting (adaboost), stochastic gradient boosting (gbm), extreme gradient boosting (xgbTree) in an attempt to develop a model for predicting the student’s performance of a private university at Meghalaya using three categories of data namely demographic, prior academic record, personality. The collected data are found to be highly imbalanced and also consists of missing values. We employ k-nearest neighbor (knn) data imputation technique to tackle the missing values. The models are developed on the imputed data with 10 fold cross validation technique and are evaluated using precision, specificity, recall, kappa metrics. As the data are imbalanced, we avoid using accuracy as the metrics of evaluating the model and instead use balanced accuracy and F-score. We compare the ensemble technique with single classifier C4.5. The best result is provided by random forest and adaboost with F-score of 66.67%, balanced accuracy of 75%, and accuracy of 96.94%." @default.
- W3159031457 created "2021-05-10" @default.
- W3159031457 creator A5034131509 @default.
- W3159031457 creator A5063162990 @default.
- W3159031457 date "2021-04-29" @default.
- W3159031457 modified "2023-10-14" @default.
- W3159031457 title "Learning from Imbalanced Educational Data Using Ensemble Machine Learning Algorithms" @default.
- W3159031457 doi "https://doi.org/10.14704/web/v18si01/web18053" @default.
- W3159031457 hasPublicationYear "2021" @default.
- W3159031457 type Work @default.
- W3159031457 sameAs 3159031457 @default.
- W3159031457 citedByCount "1" @default.
- W3159031457 countsByYear W31590314572023 @default.
- W3159031457 crossrefType "journal-article" @default.
- W3159031457 hasAuthorship W3159031457A5034131509 @default.
- W3159031457 hasAuthorship W3159031457A5063162990 @default.
- W3159031457 hasBestOaLocation W31590314571 @default.
- W3159031457 hasConcept C119857082 @default.
- W3159031457 hasConcept C124101348 @default.
- W3159031457 hasConcept C141404830 @default.
- W3159031457 hasConcept C154945302 @default.
- W3159031457 hasConcept C169258074 @default.
- W3159031457 hasConcept C41008148 @default.
- W3159031457 hasConcept C45942800 @default.
- W3159031457 hasConcept C46686674 @default.
- W3159031457 hasConcept C58041806 @default.
- W3159031457 hasConcept C70153297 @default.
- W3159031457 hasConcept C9357733 @default.
- W3159031457 hasConcept C95623464 @default.
- W3159031457 hasConceptScore W3159031457C119857082 @default.
- W3159031457 hasConceptScore W3159031457C124101348 @default.
- W3159031457 hasConceptScore W3159031457C141404830 @default.
- W3159031457 hasConceptScore W3159031457C154945302 @default.
- W3159031457 hasConceptScore W3159031457C169258074 @default.
- W3159031457 hasConceptScore W3159031457C41008148 @default.
- W3159031457 hasConceptScore W3159031457C45942800 @default.
- W3159031457 hasConceptScore W3159031457C46686674 @default.
- W3159031457 hasConceptScore W3159031457C58041806 @default.
- W3159031457 hasConceptScore W3159031457C70153297 @default.
- W3159031457 hasConceptScore W3159031457C9357733 @default.
- W3159031457 hasConceptScore W3159031457C95623464 @default.
- W3159031457 hasIssue "Special Issue 01" @default.
- W3159031457 hasLocation W31590314571 @default.
- W3159031457 hasOpenAccess W3159031457 @default.
- W3159031457 hasPrimaryLocation W31590314571 @default.
- W3159031457 hasRelatedWork W3100297620 @default.
- W3159031457 hasRelatedWork W3159031457 @default.
- W3159031457 hasRelatedWork W3210229324 @default.
- W3159031457 hasRelatedWork W4210375145 @default.
- W3159031457 hasRelatedWork W4220785415 @default.
- W3159031457 hasRelatedWork W4293069612 @default.
- W3159031457 hasRelatedWork W4296079469 @default.
- W3159031457 hasRelatedWork W4296081764 @default.
- W3159031457 hasRelatedWork W4298012357 @default.
- W3159031457 hasRelatedWork W4320484903 @default.
- W3159031457 hasVolume "18" @default.
- W3159031457 isParatext "false" @default.
- W3159031457 isRetracted "false" @default.
- W3159031457 magId "3159031457" @default.
- W3159031457 workType "article" @default.