Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159072468> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3159072468 endingPage "1384" @default.
- W3159072468 startingPage "1347" @default.
- W3159072468 abstract "Abstract For fixed $alpha in [0,1]$ , consider the set $S_{alpha ,N}$ of dilated squares $alpha , 4alpha , 9alpha , dots , N^2alpha , $ modulo $1$ . Rudnick and Sarnak conjectured that, for Lebesgue, almost all such $alpha $ the gap-distribution of $S_{alpha ,N}$ is consistent with the Poisson model (in the limit as N tends to infinity). In this paper, we prove a new estimate for the triple correlations associated with this problem, establishing an asymptotic expression for the third moment of the number of elements of $S_{alpha ,N}$ in a random interval of length $L/N$ , provided that $L> N^{1/4+varepsilon }$ . The threshold of $tfrac {1}{4}$ is substantially smaller than the threshold of $tfrac {1}{2}$ (which is the threshold that would be given by a naïve discrepancy estimate). Unlike the theory of pair correlations, rather little is known about triple correlations of the dilations $(alpha a_n , text {mod } 1)_{n=1}^{infty } $ for a nonlacunary sequence $(a_n)_{n=1}^{infty } $ of increasing integers. This is partially due to the fact that the second moment of the triple correlation function is difficult to control, and thus standard techniques involving variance bounds are not applicable. We circumvent this impasse by using an argument inspired by works of Rudnick, Sarnak, and Zaharescu, and Heath-Brown, which connects the triple correlation function to some modular counting problems. In Appendix B, we comment on the relationship between discrepancy and correlation functions, answering a question of Steinerberger." @default.
- W3159072468 created "2021-05-10" @default.
- W3159072468 creator A5005536378 @default.
- W3159072468 creator A5083682612 @default.
- W3159072468 date "2021-05-04" @default.
- W3159072468 modified "2023-09-26" @default.
- W3159072468 title "On the triple correlations of fractional parts of" @default.
- W3159072468 cites W1987865584 @default.
- W3159072468 cites W2008250502 @default.
- W3159072468 cites W2016890111 @default.
- W3159072468 cites W2025462895 @default.
- W3159072468 cites W2040958381 @default.
- W3159072468 cites W2072952670 @default.
- W3159072468 cites W2077055049 @default.
- W3159072468 cites W2103387554 @default.
- W3159072468 cites W2107464925 @default.
- W3159072468 cites W2127456573 @default.
- W3159072468 cites W2129442062 @default.
- W3159072468 cites W2155071113 @default.
- W3159072468 cites W2762033570 @default.
- W3159072468 cites W2962771787 @default.
- W3159072468 cites W2963508107 @default.
- W3159072468 cites W3098107121 @default.
- W3159072468 cites W3121652857 @default.
- W3159072468 cites W3193517447 @default.
- W3159072468 cites W4234316157 @default.
- W3159072468 cites W61505646 @default.
- W3159072468 cites W978504870 @default.
- W3159072468 doi "https://doi.org/10.4153/s0008414x21000249" @default.
- W3159072468 hasPublicationYear "2021" @default.
- W3159072468 type Work @default.
- W3159072468 sameAs 3159072468 @default.
- W3159072468 citedByCount "3" @default.
- W3159072468 countsByYear W31590724682022 @default.
- W3159072468 countsByYear W31590724682023 @default.
- W3159072468 crossrefType "journal-article" @default.
- W3159072468 hasAuthorship W3159072468A5005536378 @default.
- W3159072468 hasAuthorship W3159072468A5083682612 @default.
- W3159072468 hasConcept C114614502 @default.
- W3159072468 hasConcept C134306372 @default.
- W3159072468 hasConcept C138885662 @default.
- W3159072468 hasConcept C14036430 @default.
- W3159072468 hasConcept C2778067643 @default.
- W3159072468 hasConcept C2780813799 @default.
- W3159072468 hasConcept C33923547 @default.
- W3159072468 hasConcept C41895202 @default.
- W3159072468 hasConcept C54732982 @default.
- W3159072468 hasConcept C7321624 @default.
- W3159072468 hasConcept C78458016 @default.
- W3159072468 hasConcept C86803240 @default.
- W3159072468 hasConceptScore W3159072468C114614502 @default.
- W3159072468 hasConceptScore W3159072468C134306372 @default.
- W3159072468 hasConceptScore W3159072468C138885662 @default.
- W3159072468 hasConceptScore W3159072468C14036430 @default.
- W3159072468 hasConceptScore W3159072468C2778067643 @default.
- W3159072468 hasConceptScore W3159072468C2780813799 @default.
- W3159072468 hasConceptScore W3159072468C33923547 @default.
- W3159072468 hasConceptScore W3159072468C41895202 @default.
- W3159072468 hasConceptScore W3159072468C54732982 @default.
- W3159072468 hasConceptScore W3159072468C7321624 @default.
- W3159072468 hasConceptScore W3159072468C78458016 @default.
- W3159072468 hasConceptScore W3159072468C86803240 @default.
- W3159072468 hasIssue "5" @default.
- W3159072468 hasLocation W31590724681 @default.
- W3159072468 hasOpenAccess W3159072468 @default.
- W3159072468 hasPrimaryLocation W31590724681 @default.
- W3159072468 hasRelatedWork W2021992631 @default.
- W3159072468 hasRelatedWork W2031005330 @default.
- W3159072468 hasRelatedWork W2061278903 @default.
- W3159072468 hasRelatedWork W2069776432 @default.
- W3159072468 hasRelatedWork W2344032545 @default.
- W3159072468 hasRelatedWork W2782908977 @default.
- W3159072468 hasRelatedWork W2951547478 @default.
- W3159072468 hasRelatedWork W2954497896 @default.
- W3159072468 hasRelatedWork W3098388960 @default.
- W3159072468 hasRelatedWork W4244026587 @default.
- W3159072468 hasVolume "74" @default.
- W3159072468 isParatext "false" @default.
- W3159072468 isRetracted "false" @default.
- W3159072468 magId "3159072468" @default.
- W3159072468 workType "article" @default.