Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159151031> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3159151031 abstract "Abstract Background Genomic information is nowadays widely used for precise cancer treatments. Since the individual type of omics data only represents a single view that suffers from data noise and bias, multiple types of omics data are required for accurate cancer prognosis prediction. However, it is challenging to effectively integrate multi-omics data due to the large number of redundant variables but relatively small sample size. With the recent progress in deep learning techniques, Autoencoder was used to integrate multi-omics data for extracting representative features. Nevertheless, the generated model is fragile from data noises. Additionally, previous studies usually focused on individual cancer types without making comprehensive tests on pan-cancer. Here, we employed the denoising Autoencoder to get a robust representation of the multi-omics data, and then used the learned representative features to estimate patients’ risks. Results By applying to 15 cancers from The Cancer Genome Atlas (TCGA), our method was shown to improve the C-index values over previous methods by 6.5% on average. Considering the difficulty to obtain multi-omics data in practice, we further used only mRNA data to fit the estimated risks by training XGboost models, and found the models could achieve an average C-index value of 0.627. As a case study, the breast cancer prognosis prediction model was independently tested on three datasets from the Gene Expression Omnibus (GEO), and shown able to significantly separate high-risk patients from low-risk ones (C-index>0.6, p-values<0.05). Based on the risk subgroups divided by our method, we identified nine prognostic markers highly associated with breast cancer, among which seven genes have been proved by literature review. Conclusion Our comprehensive tests indicated that we have constructed an accurate and robust framework to integrate multi-omics data for cancer prognosis prediction. Moreover, it is an effective way to discover cancer prognosis-related genes." @default.
- W3159151031 created "2021-05-10" @default.
- W3159151031 creator A5015329746 @default.
- W3159151031 creator A5023539493 @default.
- W3159151031 creator A5041973254 @default.
- W3159151031 creator A5056181358 @default.
- W3159151031 creator A5076568855 @default.
- W3159151031 creator A5082648894 @default.
- W3159151031 date "2019-10-17" @default.
- W3159151031 modified "2023-10-18" @default.
- W3159151031 title "Integrating multi-omics data through deep learning for accurate cancer prognosis prediction" @default.
- W3159151031 cites W1965801346 @default.
- W3159151031 cites W1969845834 @default.
- W3159151031 cites W1986352281 @default.
- W3159151031 cites W1988502442 @default.
- W3159151031 cites W2025768430 @default.
- W3159151031 cites W2031872860 @default.
- W3159151031 cites W2068976735 @default.
- W3159151031 cites W2076326365 @default.
- W3159151031 cites W2111547563 @default.
- W3159151031 cites W2146512944 @default.
- W3159151031 cites W2185207072 @default.
- W3159151031 cites W2563997677 @default.
- W3159151031 cites W2567080747 @default.
- W3159151031 cites W2734329550 @default.
- W3159151031 cites W2739330662 @default.
- W3159151031 cites W2761668583 @default.
- W3159151031 cites W2765219164 @default.
- W3159151031 cites W2767092306 @default.
- W3159151031 cites W2767281692 @default.
- W3159151031 cites W2775288710 @default.
- W3159151031 cites W2790909665 @default.
- W3159151031 cites W2892452712 @default.
- W3159151031 cites W2950985821 @default.
- W3159151031 cites W2951209146 @default.
- W3159151031 cites W2954499361 @default.
- W3159151031 cites W3102476541 @default.
- W3159151031 cites W4324114579 @default.
- W3159151031 doi "https://doi.org/10.1101/807214" @default.
- W3159151031 hasPublicationYear "2019" @default.
- W3159151031 type Work @default.
- W3159151031 sameAs 3159151031 @default.
- W3159151031 citedByCount "6" @default.
- W3159151031 countsByYear W31591510312020 @default.
- W3159151031 countsByYear W31591510312021 @default.
- W3159151031 countsByYear W31591510312022 @default.
- W3159151031 crossrefType "posted-content" @default.
- W3159151031 hasAuthorship W3159151031A5015329746 @default.
- W3159151031 hasAuthorship W3159151031A5023539493 @default.
- W3159151031 hasAuthorship W3159151031A5041973254 @default.
- W3159151031 hasAuthorship W3159151031A5056181358 @default.
- W3159151031 hasAuthorship W3159151031A5076568855 @default.
- W3159151031 hasAuthorship W3159151031A5082648894 @default.
- W3159151031 hasBestOaLocation W31591510311 @default.
- W3159151031 hasConcept C101738243 @default.
- W3159151031 hasConcept C108583219 @default.
- W3159151031 hasConcept C119857082 @default.
- W3159151031 hasConcept C124101348 @default.
- W3159151031 hasConcept C154945302 @default.
- W3159151031 hasConcept C157585117 @default.
- W3159151031 hasConcept C41008148 @default.
- W3159151031 hasConcept C60644358 @default.
- W3159151031 hasConcept C86803240 @default.
- W3159151031 hasConceptScore W3159151031C101738243 @default.
- W3159151031 hasConceptScore W3159151031C108583219 @default.
- W3159151031 hasConceptScore W3159151031C119857082 @default.
- W3159151031 hasConceptScore W3159151031C124101348 @default.
- W3159151031 hasConceptScore W3159151031C154945302 @default.
- W3159151031 hasConceptScore W3159151031C157585117 @default.
- W3159151031 hasConceptScore W3159151031C41008148 @default.
- W3159151031 hasConceptScore W3159151031C60644358 @default.
- W3159151031 hasConceptScore W3159151031C86803240 @default.
- W3159151031 hasLocation W31591510311 @default.
- W3159151031 hasLocation W31591510312 @default.
- W3159151031 hasOpenAccess W3159151031 @default.
- W3159151031 hasPrimaryLocation W31591510311 @default.
- W3159151031 hasRelatedWork W2567271240 @default.
- W3159151031 hasRelatedWork W2788487394 @default.
- W3159151031 hasRelatedWork W2922457425 @default.
- W3159151031 hasRelatedWork W2989980351 @default.
- W3159151031 hasRelatedWork W3002526821 @default.
- W3159151031 hasRelatedWork W3044458868 @default.
- W3159151031 hasRelatedWork W3196183652 @default.
- W3159151031 hasRelatedWork W4213225422 @default.
- W3159151031 hasRelatedWork W4250304930 @default.
- W3159151031 hasRelatedWork W4289656111 @default.
- W3159151031 isParatext "false" @default.
- W3159151031 isRetracted "false" @default.
- W3159151031 magId "3159151031" @default.
- W3159151031 workType "article" @default.