Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159296334> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3159296334 endingPage "524" @default.
- W3159296334 startingPage "516" @default.
- W3159296334 abstract "Analizar la percepción de alumnos de Medicina sobre el impacto de la inteligencia artificial (IA) en radiología. Se distribuyó una encuesta estructurada en 28 ítems, organizados en seis secciones, entre estudiantes de Medicina españoles durante diciembre de 2019. Respondieron 341 estudiantes, de los que 27 (7,9%) incluyeron la radiología entre sus tres opciones principales para elegir especialidad; el 51,9% consideró que entendía bien qué es la inteligencia artificial. La tasa de acierto global en preguntas objetivas verdadero/falso sobre inteligencia artificial fue del 70,7%, y un 75,9% expresó su desacuerdo con la hipótesis de un reemplazo futuro del radiólogo, mientras que el desacuerdo con una hipotética reducción de la demanda de radiólogos fue menor (41,9%). Solamente el 36,7% mostró preocupación por la inteligencia artificial a la hora de elegir radiología como especialidad. Los estudiantes de cursos inferiores se mostraron más de acuerdo con que los radiólogos acepten los cambios tecnológicos de la inteligencia artificial y trabajen con la industria para su aplicación y con la necesidad de incluir formación básica sobre inteligencia artificial en el currículo de medicina. Los estudiantes encuestados son conscientes del impacto de la inteligencia artificial en la vida diaria, pero desconocen el debate actual sobre sus potenciales aplicaciones en radiología. En general, piensan que la inteligencia artificial revolucionará la radiología, pero sin un impacto alarmante en la empleabilidad de los radiólogos. Los alumnos encuestados opinan que es necesario proporcionar formación básica sobre inteligencia artificial en pregrado. To analyze medical students’ perceptions of the impact of artificial intelligence in radiology. A structured questionnaire comprising 28 items organized into six sections was distributed to students of medicine in Spain in December 2019. A total of 341 students responded. Of these, 27 (7.9%) included radiology among their three main choices for specialization, and 51.9% considered that they clearly understood what artificial intelligence is. The overall rate of correct answers to the objective true-or-false questions about artificial intelligence was 70.7%. Whereas 75.9% expressed their disagreement with the hypothesis that artificial intelligence would replace radiologists, only 41.9% disagreed with the hypothesis that the demand for radiologists would decrease in the future. Only 36.7% expressed concerns about the role of artificial intelligence related to choosing radiology as a specialty. A greater proportion of students in the early years of medical school agreed with statements that radiologists accept artificial-intelligence-related technological changes and work with the industry to apply them as well as with statements about the need to include basic training about artificial intelligence in the medical school curriculum. The students surveyed are aware of the impact of artificial intelligence in daily life, but not of the current debate about its potential applications in radiology. In general, they think that artificial intelligence will revolutionize radiology without having an alarming effect on the employability of radiologists. The students surveyed think that it is necessary to provide basic training about artificial intelligence in undergraduate medical school programs." @default.
- W3159296334 created "2021-05-10" @default.
- W3159296334 creator A5031650315 @default.
- W3159296334 creator A5049766518 @default.
- W3159296334 date "2022-11-01" @default.
- W3159296334 modified "2023-10-16" @default.
- W3159296334 title "Percepciones de estudiantes de Medicina sobre el impacto de la inteligencia artificial en radiología" @default.
- W3159296334 cites W1986699598 @default.
- W3159296334 cites W2048812704 @default.
- W3159296334 cites W2084568214 @default.
- W3159296334 cites W2191726275 @default.
- W3159296334 cites W2490281557 @default.
- W3159296334 cites W2553445539 @default.
- W3159296334 cites W2609216200 @default.
- W3159296334 cites W2768968348 @default.
- W3159296334 cites W2788527903 @default.
- W3159296334 cites W2791920958 @default.
- W3159296334 cites W2795116242 @default.
- W3159296334 cites W2803760365 @default.
- W3159296334 cites W2810349670 @default.
- W3159296334 cites W2855469196 @default.
- W3159296334 cites W2900248733 @default.
- W3159296334 cites W2905034037 @default.
- W3159296334 cites W2910165844 @default.
- W3159296334 cites W2914069220 @default.
- W3159296334 cites W2936049295 @default.
- W3159296334 cites W2939970150 @default.
- W3159296334 cites W2944519781 @default.
- W3159296334 cites W2954683258 @default.
- W3159296334 cites W2971989430 @default.
- W3159296334 cites W2984213453 @default.
- W3159296334 cites W2988112393 @default.
- W3159296334 cites W3000144657 @default.
- W3159296334 cites W3012668909 @default.
- W3159296334 cites W3026868200 @default.
- W3159296334 doi "https://doi.org/10.1016/j.rx.2021.03.006" @default.
- W3159296334 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33934846" @default.
- W3159296334 hasPublicationYear "2022" @default.
- W3159296334 type Work @default.
- W3159296334 sameAs 3159296334 @default.
- W3159296334 citedByCount "8" @default.
- W3159296334 countsByYear W31592963342022 @default.
- W3159296334 countsByYear W31592963342023 @default.
- W3159296334 crossrefType "journal-article" @default.
- W3159296334 hasAuthorship W3159296334A5031650315 @default.
- W3159296334 hasAuthorship W3159296334A5049766518 @default.
- W3159296334 hasConcept C142362112 @default.
- W3159296334 hasConcept C15708023 @default.
- W3159296334 hasConceptScore W3159296334C142362112 @default.
- W3159296334 hasConceptScore W3159296334C15708023 @default.
- W3159296334 hasIssue "6" @default.
- W3159296334 hasLocation W31592963341 @default.
- W3159296334 hasOpenAccess W3159296334 @default.
- W3159296334 hasPrimaryLocation W31592963341 @default.
- W3159296334 hasRelatedWork W135163757 @default.
- W3159296334 hasRelatedWork W1557907936 @default.
- W3159296334 hasRelatedWork W2111865594 @default.
- W3159296334 hasRelatedWork W2123836397 @default.
- W3159296334 hasRelatedWork W2248387313 @default.
- W3159296334 hasRelatedWork W3006587989 @default.
- W3159296334 hasRelatedWork W3120330463 @default.
- W3159296334 hasRelatedWork W3203105381 @default.
- W3159296334 hasRelatedWork W1832118649 @default.
- W3159296334 hasRelatedWork W1934311404 @default.
- W3159296334 hasVolume "64" @default.
- W3159296334 isParatext "false" @default.
- W3159296334 isRetracted "false" @default.
- W3159296334 magId "3159296334" @default.
- W3159296334 workType "article" @default.