Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159348411> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3159348411 abstract "Background: Shoulder injury related to vaccine administration (SIRVA) accounts for more than half of all claims received by the National Vaccine Injury Compensation Program. However, there is a lack of population-based studies due to the challenge of identifying SIRVA cases in large health care databases. Objective: To develop a natural language processing (NLP) method to identify SIRVA cases from clinical notes. Methods: We conducted the study among members of a large integrated health care organization who were vaccinated between 04/1/2016 and 12/31/2017 and had subsequent diagnosis codes indicative of shoulder injury. Based on a training dataset with a chart review reference standard of 164 individuals, we developed an NLP algorithm to extract shoulder disorder information, including prior vaccination, anatomic location, temporality and causality. The algorithm identified three groups of positive SIRVA cases (definite, probable and possible) based on the strength of evidence. We compared NLP results to a chart review reference standard of 100 vaccinated individuals. We then applied the final automated NLP algorithm to a broader cohort of vaccinated individuals with a shoulder injury diagnosis code and performed manual chart confirmation on a random sample of NLP-identified definite cases and all NLP-identified probable and possible cases. Results: In the validation sample, the NLP algorithm had 100% accuracy for identifying 4 SIRVA cases and 96 individuals without SIRVA. In the broader cohort of 53,585 individuals, the NLP algorithm identified 291 definite, 124 probable, and 52 possible SIRVA cases. The chart-confirmation rates for these groups were 95.3%, 67.7% and 18.9%, respectively. Conclusions: The algorithm performed with high sensitivity and reasonable specificity in identifying positive SIRVA cases. The NLP algorithm can potentially be used in future population-based studies to identify this rare adverse event, avoiding labor-intensive chart review validation." @default.
- W3159348411 created "2021-05-10" @default.
- W3159348411 creator A5016662921 @default.
- W3159348411 creator A5018253208 @default.
- W3159348411 creator A5020555731 @default.
- W3159348411 creator A5026569333 @default.
- W3159348411 creator A5027632510 @default.
- W3159348411 creator A5039004657 @default.
- W3159348411 creator A5049754305 @default.
- W3159348411 creator A5068600661 @default.
- W3159348411 creator A5074151620 @default.
- W3159348411 creator A5078022975 @default.
- W3159348411 creator A5082232884 @default.
- W3159348411 date "2021-05-07" @default.
- W3159348411 modified "2023-10-15" @default.
- W3159348411 title "Identifying Cases of Shoulder Injury Related to Vaccine Administration (SIRVA) Using Natural Language Processing" @default.
- W3159348411 cites W168564468 @default.
- W3159348411 cites W1808652302 @default.
- W3159348411 cites W1942444304 @default.
- W3159348411 cites W1979639371 @default.
- W3159348411 cites W1980040599 @default.
- W3159348411 cites W2043768386 @default.
- W3159348411 cites W2072230280 @default.
- W3159348411 cites W2076581021 @default.
- W3159348411 cites W2081580037 @default.
- W3159348411 cites W2093274439 @default.
- W3159348411 cites W2114136064 @default.
- W3159348411 cites W2143017621 @default.
- W3159348411 cites W2145870355 @default.
- W3159348411 cites W2158939484 @default.
- W3159348411 cites W2159583324 @default.
- W3159348411 cites W2164995818 @default.
- W3159348411 cites W2169818249 @default.
- W3159348411 cites W2250539671 @default.
- W3159348411 cites W2403194270 @default.
- W3159348411 cites W2493916176 @default.
- W3159348411 cites W2741803237 @default.
- W3159348411 cites W2802532163 @default.
- W3159348411 cites W2809021630 @default.
- W3159348411 cites W2933294645 @default.
- W3159348411 cites W2939717938 @default.
- W3159348411 cites W2962167802 @default.
- W3159348411 cites W2989802089 @default.
- W3159348411 cites W2991260845 @default.
- W3159348411 cites W2992885821 @default.
- W3159348411 cites W3007228389 @default.
- W3159348411 cites W3010238860 @default.
- W3159348411 cites W3036943922 @default.
- W3159348411 cites W3173417368 @default.
- W3159348411 cites W942379102 @default.
- W3159348411 cites W979396035 @default.
- W3159348411 doi "https://doi.org/10.1101/2021.05.05.21256555" @default.
- W3159348411 hasPublicationYear "2021" @default.
- W3159348411 type Work @default.
- W3159348411 sameAs 3159348411 @default.
- W3159348411 citedByCount "1" @default.
- W3159348411 countsByYear W31593484112022 @default.
- W3159348411 crossrefType "posted-content" @default.
- W3159348411 hasAuthorship W3159348411A5016662921 @default.
- W3159348411 hasAuthorship W3159348411A5018253208 @default.
- W3159348411 hasAuthorship W3159348411A5020555731 @default.
- W3159348411 hasAuthorship W3159348411A5026569333 @default.
- W3159348411 hasAuthorship W3159348411A5027632510 @default.
- W3159348411 hasAuthorship W3159348411A5039004657 @default.
- W3159348411 hasAuthorship W3159348411A5049754305 @default.
- W3159348411 hasAuthorship W3159348411A5068600661 @default.
- W3159348411 hasAuthorship W3159348411A5074151620 @default.
- W3159348411 hasAuthorship W3159348411A5078022975 @default.
- W3159348411 hasAuthorship W3159348411A5082232884 @default.
- W3159348411 hasBestOaLocation W31593484111 @default.
- W3159348411 hasConcept C142724271 @default.
- W3159348411 hasConcept C71924100 @default.
- W3159348411 hasConcept C72563966 @default.
- W3159348411 hasConceptScore W3159348411C142724271 @default.
- W3159348411 hasConceptScore W3159348411C71924100 @default.
- W3159348411 hasConceptScore W3159348411C72563966 @default.
- W3159348411 hasLocation W31593484111 @default.
- W3159348411 hasOpenAccess W3159348411 @default.
- W3159348411 hasPrimaryLocation W31593484111 @default.
- W3159348411 hasRelatedWork W2070338448 @default.
- W3159348411 hasRelatedWork W2071535500 @default.
- W3159348411 hasRelatedWork W2114965713 @default.
- W3159348411 hasRelatedWork W2315085516 @default.
- W3159348411 hasRelatedWork W2316407790 @default.
- W3159348411 hasRelatedWork W2330239290 @default.
- W3159348411 hasRelatedWork W2603773853 @default.
- W3159348411 hasRelatedWork W2952239533 @default.
- W3159348411 hasRelatedWork W2964295425 @default.
- W3159348411 hasRelatedWork W2999832097 @default.
- W3159348411 isParatext "false" @default.
- W3159348411 isRetracted "false" @default.
- W3159348411 magId "3159348411" @default.
- W3159348411 workType "article" @default.