Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159352308> ?p ?o ?g. }
- W3159352308 endingPage "20200055" @default.
- W3159352308 startingPage "20200055" @default.
- W3159352308 abstract "This paper analyzes the application of artificial neural networks (ANN) to predict the 1-day compressive strength of ultra-high-performance concrete (UHPC) made with any combination of powders and supplementary cementitious materials (SCM) such as silica fume (SF), fly ash (FA), ground granulated blast slag furnace (GGBSF), recycled glass powder (GP), rice husk ash (RHA), fluid catalytic cracking catalyst residue (FC3R), metakaolin (MK), limestone powder (LP), and quartz powder (QP). A total of 604 data from scientific literature were used to train the one hidden layer ANN model by using the k-fold validation procedure. Furthermore, 90 UHPC mixtures were experimentally performed to validate the proposed ANN model. The performance of the model was assessed using several statistical performance indexes: ratio of the root mean square error to the standard deviation of measured data (RSR), root mean square error (RSME), normalized mean bias error (NMBE), Nash–Sutcliff efficiency, and coefficient of multiple determination (R2). Connection weight approach (CWA) algorithm was utilized to analyze the relationships between the UHPC components and the 1-day compressive strength. The results indicated that the ANN is an efficient model for predicting the early strength (1-day compressive strength) of UHPC achieving R2 values of 0.88 and 0.86 on the test data and experimental data, respectively, even when the experimental dosages included combinations of components that were not found in the training data. The results of the CWA analysis indicated that SCM such as MK, FC3R, SF, and LP, as well as other factors such as virtual packing density, improved the early strength of UHPC, whereas FA, GP, and RHA were pointed out as harmful for the one-day compressive strength. As conclusion, the ANN model could be helpful in the developing of UHPC with early strength needs by preselecting the combinations of available SCM and powders that have better results in the model at lower cost." @default.
- W3159352308 created "2021-05-10" @default.
- W3159352308 creator A5006737973 @default.
- W3159352308 date "2021-05-10" @default.
- W3159352308 modified "2023-10-02" @default.
- W3159352308 title "K-fold Validation Neural Network Approach for Predicting the One-Day Compressive Strength of UHPC" @default.
- W3159352308 cites W1131333093 @default.
- W3159352308 cites W148488119 @default.
- W3159352308 cites W1964594450 @default.
- W3159352308 cites W1968140413 @default.
- W3159352308 cites W1969302463 @default.
- W3159352308 cites W2020950505 @default.
- W3159352308 cites W2028991682 @default.
- W3159352308 cites W2033904036 @default.
- W3159352308 cites W2040870580 @default.
- W3159352308 cites W2044917120 @default.
- W3159352308 cites W2052724512 @default.
- W3159352308 cites W2060910191 @default.
- W3159352308 cites W2067242098 @default.
- W3159352308 cites W2082170001 @default.
- W3159352308 cites W2086894209 @default.
- W3159352308 cites W2092709759 @default.
- W3159352308 cites W2093649296 @default.
- W3159352308 cites W2094505658 @default.
- W3159352308 cites W2106100979 @default.
- W3159352308 cites W2109563136 @default.
- W3159352308 cites W2143107056 @default.
- W3159352308 cites W2169053895 @default.
- W3159352308 cites W2337960804 @default.
- W3159352308 cites W2465968023 @default.
- W3159352308 cites W2530195212 @default.
- W3159352308 cites W2592889387 @default.
- W3159352308 cites W2604979947 @default.
- W3159352308 cites W2762803031 @default.
- W3159352308 cites W2766736793 @default.
- W3159352308 cites W2805033747 @default.
- W3159352308 cites W2829410261 @default.
- W3159352308 cites W2891335344 @default.
- W3159352308 cites W2994620177 @default.
- W3159352308 cites W2995602377 @default.
- W3159352308 cites W3024810074 @default.
- W3159352308 cites W3025343486 @default.
- W3159352308 cites W3028253647 @default.
- W3159352308 cites W3040735007 @default.
- W3159352308 cites W3041591662 @default.
- W3159352308 cites W3095723797 @default.
- W3159352308 cites W3096175229 @default.
- W3159352308 cites W3138811411 @default.
- W3159352308 cites W3169457917 @default.
- W3159352308 cites W3191481405 @default.
- W3159352308 cites W4214736747 @default.
- W3159352308 cites W4231632758 @default.
- W3159352308 cites W4256236742 @default.
- W3159352308 cites W94052953 @default.
- W3159352308 doi "https://doi.org/10.1520/acem20200055" @default.
- W3159352308 hasPublicationYear "2021" @default.
- W3159352308 type Work @default.
- W3159352308 sameAs 3159352308 @default.
- W3159352308 citedByCount "10" @default.
- W3159352308 countsByYear W31593523082021 @default.
- W3159352308 countsByYear W31593523082022 @default.
- W3159352308 countsByYear W31593523082023 @default.
- W3159352308 crossrefType "journal-article" @default.
- W3159352308 hasAuthorship W3159352308A5006737973 @default.
- W3159352308 hasConcept C136229726 @default.
- W3159352308 hasConcept C154945302 @default.
- W3159352308 hasConcept C159985019 @default.
- W3159352308 hasConcept C192562407 @default.
- W3159352308 hasConcept C199360897 @default.
- W3159352308 hasConcept C30407753 @default.
- W3159352308 hasConcept C41008148 @default.
- W3159352308 hasConcept C50644808 @default.
- W3159352308 hasConcept C53942344 @default.
- W3159352308 hasConcept C71924100 @default.
- W3159352308 hasConceptScore W3159352308C136229726 @default.
- W3159352308 hasConceptScore W3159352308C154945302 @default.
- W3159352308 hasConceptScore W3159352308C159985019 @default.
- W3159352308 hasConceptScore W3159352308C192562407 @default.
- W3159352308 hasConceptScore W3159352308C199360897 @default.
- W3159352308 hasConceptScore W3159352308C30407753 @default.
- W3159352308 hasConceptScore W3159352308C41008148 @default.
- W3159352308 hasConceptScore W3159352308C50644808 @default.
- W3159352308 hasConceptScore W3159352308C53942344 @default.
- W3159352308 hasConceptScore W3159352308C71924100 @default.
- W3159352308 hasIssue "1" @default.
- W3159352308 hasLocation W31593523081 @default.
- W3159352308 hasOpenAccess W3159352308 @default.
- W3159352308 hasPrimaryLocation W31593523081 @default.
- W3159352308 hasRelatedWork W1994103032 @default.
- W3159352308 hasRelatedWork W2011052271 @default.
- W3159352308 hasRelatedWork W2014315543 @default.
- W3159352308 hasRelatedWork W2051270029 @default.
- W3159352308 hasRelatedWork W2082293200 @default.
- W3159352308 hasRelatedWork W2380293314 @default.
- W3159352308 hasRelatedWork W2886057184 @default.
- W3159352308 hasRelatedWork W2899084033 @default.
- W3159352308 hasRelatedWork W2943188944 @default.
- W3159352308 hasRelatedWork W4285802202 @default.