Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159372638> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W3159372638 abstract "<p>Dynamic water uptake by aerosol is a major driver of cloud droplet activation and growth. Interfacial mass transfer&#8212; that governs water uptake if the mean free path of molecules in the vapour phase is comparable to particle size &#8212; is represented in models by the mass accommodation coefficient. Although widely used, this approach neglects <em>i</em>) other internal interfaces (e.g., liquid-liquid that may be important for water uptake), and, <em>ii</em>) fluctuations of the liquid surface from capillary waves that modulate the surface and induce ambiguity in the estimation of mass accommodation coefficients. These issues can be addressed if the full path of the water molecule &#8211; from vapour to the bulk aqueous phase - is considered.<span>&#160;</span></p><p>We demonstrate, using steered molecular simulations, that a full treatment of the water uptake process reveals important details of the mechanism. The simulations are used to reconstruct the free energy profile of water transport across a vapour/hydroxy cis-pinonic acid/water double interface at 300 K and 200 K. In steered molecular dynamics the transferred molecule is pulled with a finite velocity along an aptly chosen reaction coordinate and the work exerted is used to reconstruct the free energy profile. Due to the finite velocity pulling, this method takes the effect of friction on the transport mechanism into account, which is important for phases of considerably different friction coefficients and is neglected by<span>&#160; </span>quasi equilibrium free energy methods. Free energy profiles are used to estimate surface and bulk uptake coefficients and are decomposed into entropic and enthalpic contributions.<span>&#160;</span></p><p>Surface accommodation coefficients are unity at both temperatures, while bulk uptake at 300 K from the internal interface is strongly hindered (k<sub>b</sub>=0.05) by the increased density and molecular order in the first layer of the aqueous phase, which results in decreased orientational entropy. The difference between bulk and surface uptake coefficients also implies that water accumulates in the organic shell, which cannot be predicted using a single uptake coefficient for the whole particle. The minimum of the free energy profile at the organic/water interface, rationalised by increased conformational entropy due to local mixing and the depleted system density, results in a concentration gradient which helps maintain low surface tension and phase separation. Low surface tensions may explain increased CCN activity. These entropic features of the free energy profiles diminish at low temperature, which invokes a completely different mechanism of water uptake. Our results point out the need to describe water uptake in aerosol growth models using a temperature dependent parametrisation.</p>" @default.
- W3159372638 created "2021-05-10" @default.
- W3159372638 creator A5050947169 @default.
- W3159372638 creator A5070023184 @default.
- W3159372638 creator A5070554030 @default.
- W3159372638 date "2021-03-04" @default.
- W3159372638 modified "2023-10-03" @default.
- W3159372638 title "Temperature Dependent Entropy Driven Water Uptake in Phase Separated Aerosol from Steered Molecular Dynamics and Intrinsic Surface Analysis" @default.
- W3159372638 doi "https://doi.org/10.5194/egusphere-egu21-14058" @default.
- W3159372638 hasPublicationYear "2021" @default.
- W3159372638 type Work @default.
- W3159372638 sameAs 3159372638 @default.
- W3159372638 citedByCount "0" @default.
- W3159372638 crossrefType "posted-content" @default.
- W3159372638 hasAuthorship W3159372638A5050947169 @default.
- W3159372638 hasAuthorship W3159372638A5070023184 @default.
- W3159372638 hasAuthorship W3159372638A5070554030 @default.
- W3159372638 hasBestOaLocation W31593726382 @default.
- W3159372638 hasConcept C121332964 @default.
- W3159372638 hasConcept C147597530 @default.
- W3159372638 hasConcept C147789679 @default.
- W3159372638 hasConcept C178790620 @default.
- W3159372638 hasConcept C184651966 @default.
- W3159372638 hasConcept C185592680 @default.
- W3159372638 hasConcept C32909587 @default.
- W3159372638 hasConcept C44280652 @default.
- W3159372638 hasConcept C59593255 @default.
- W3159372638 hasConcept C97355855 @default.
- W3159372638 hasConceptScore W3159372638C121332964 @default.
- W3159372638 hasConceptScore W3159372638C147597530 @default.
- W3159372638 hasConceptScore W3159372638C147789679 @default.
- W3159372638 hasConceptScore W3159372638C178790620 @default.
- W3159372638 hasConceptScore W3159372638C184651966 @default.
- W3159372638 hasConceptScore W3159372638C185592680 @default.
- W3159372638 hasConceptScore W3159372638C32909587 @default.
- W3159372638 hasConceptScore W3159372638C44280652 @default.
- W3159372638 hasConceptScore W3159372638C59593255 @default.
- W3159372638 hasConceptScore W3159372638C97355855 @default.
- W3159372638 hasLocation W31593726381 @default.
- W3159372638 hasLocation W31593726382 @default.
- W3159372638 hasOpenAccess W3159372638 @default.
- W3159372638 hasPrimaryLocation W31593726381 @default.
- W3159372638 hasRelatedWork W1535846870 @default.
- W3159372638 hasRelatedWork W1991320858 @default.
- W3159372638 hasRelatedWork W2017706760 @default.
- W3159372638 hasRelatedWork W2051293384 @default.
- W3159372638 hasRelatedWork W205873295 @default.
- W3159372638 hasRelatedWork W2060103981 @default.
- W3159372638 hasRelatedWork W2082831552 @default.
- W3159372638 hasRelatedWork W2090666343 @default.
- W3159372638 hasRelatedWork W2367613624 @default.
- W3159372638 hasRelatedWork W3034005576 @default.
- W3159372638 isParatext "false" @default.
- W3159372638 isRetracted "false" @default.
- W3159372638 magId "3159372638" @default.
- W3159372638 workType "article" @default.