Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159407029> ?p ?o ?g. }
- W3159407029 endingPage "850" @default.
- W3159407029 startingPage "850" @default.
- W3159407029 abstract "Meeting food demand for the growing population will require an increase to crop production despite climate changes and, more particularly, severe drought episodes. Sorghum is one of the cereals most adapted to drought that feed millions of people around the world. Valorizing its genetic diversity for crop improvement can benefit from extensive phenotyping. The current methods to evaluate plant biomass, leaves area and plants height involve destructive sampling and are not practical in breeding. Phenotyping relying on drone based imagery is a powerful approach in this context. The objective of this study was to develop and validate a high throughput field phenotyping method of sorghum growth traits under contrasted water conditions relying on drone based imagery. Experiments were conducted in Bambey (Senegal) in 2018 and 2019, to test the ability of multi-spectral sensing technologies on-board a UAV platform to calculate various vegetation indices to estimate plants characteristics. In total, ten (10) contrasted varieties of West African sorghum collection were selected and arranged in a randomized complete block design with three (3) replicates and two (2) water treatments (well-watered and drought stress). This study focused on plant biomass, leaf area index (LAI) and the plant height that were measured weekly from emergence to maturity. Drone flights were performed just before each destructive sampling and images were taken by multi-spectral and visible cameras. UAV-derived vegetation indices exhibited their capacity of estimating LAI and biomass in the 2018 calibration data set, in particular: normalized difference vegetative index (NDVI), corrected transformed vegetation index (CTVI), seconded modified soil-adjusted vegetation index (MSAVI2), green normalize difference vegetation index (GNDVI), and simple ratio (SR) (r2 of 0.8 and 0.6 for LAI and biomass, respectively). Developed models were validated with 2019 data, showing a good performance (r2 of 0.92 and 0.91 for LAI and biomass accordingly). Results were also promising regarding plant height estimation (RMSE = 9.88 cm). Regression plots between the image-based estimation and the measured plant height showed a r2 of 0.83. The validation results were similar between water treatments. This study is the first successful application of drone based imagery for phenotyping sorghum growth and development in a West African context characterized by severe drought occurrence. The developed approach could be used as a decision support tool for breeding programs and as a tool to increase the throughput of sorghum genetic diversity characterization for adaptive traits." @default.
- W3159407029 created "2021-05-10" @default.
- W3159407029 creator A5019229656 @default.
- W3159407029 creator A5031768442 @default.
- W3159407029 creator A5033926103 @default.
- W3159407029 creator A5054474445 @default.
- W3159407029 creator A5067008656 @default.
- W3159407029 creator A5083614320 @default.
- W3159407029 creator A5090106621 @default.
- W3159407029 date "2021-04-27" @default.
- W3159407029 modified "2023-10-18" @default.
- W3159407029 title "Using UAV Borne, Multi-Spectral Imaging for the Field Phenotyping of Shoot Biomass, Leaf Area Index and Height of West African Sorghum Varieties under Two Contrasted Water Conditions" @default.
- W3159407029 cites W1462825729 @default.
- W3159407029 cites W1836617126 @default.
- W3159407029 cites W1984339599 @default.
- W3159407029 cites W1985870845 @default.
- W3159407029 cites W1990039682 @default.
- W3159407029 cites W1991739869 @default.
- W3159407029 cites W1992970788 @default.
- W3159407029 cites W1995494326 @default.
- W3159407029 cites W1995711721 @default.
- W3159407029 cites W1998842586 @default.
- W3159407029 cites W2000102737 @default.
- W3159407029 cites W2005270253 @default.
- W3159407029 cites W2017555282 @default.
- W3159407029 cites W2036854214 @default.
- W3159407029 cites W2038782607 @default.
- W3159407029 cites W2052014449 @default.
- W3159407029 cites W2059480495 @default.
- W3159407029 cites W2067877300 @default.
- W3159407029 cites W2071821878 @default.
- W3159407029 cites W2075015920 @default.
- W3159407029 cites W2077707413 @default.
- W3159407029 cites W2086739369 @default.
- W3159407029 cites W2091493105 @default.
- W3159407029 cites W2095162528 @default.
- W3159407029 cites W2106611604 @default.
- W3159407029 cites W2113129074 @default.
- W3159407029 cites W2113410727 @default.
- W3159407029 cites W2115796666 @default.
- W3159407029 cites W2116209999 @default.
- W3159407029 cites W2122227203 @default.
- W3159407029 cites W2125397877 @default.
- W3159407029 cites W2153243519 @default.
- W3159407029 cites W2167248655 @default.
- W3159407029 cites W2185489349 @default.
- W3159407029 cites W2195361594 @default.
- W3159407029 cites W2212980623 @default.
- W3159407029 cites W2297390335 @default.
- W3159407029 cites W2317582304 @default.
- W3159407029 cites W2401138355 @default.
- W3159407029 cites W2467491686 @default.
- W3159407029 cites W2479938810 @default.
- W3159407029 cites W2531338938 @default.
- W3159407029 cites W2551698534 @default.
- W3159407029 cites W2591121333 @default.
- W3159407029 cites W2600500039 @default.
- W3159407029 cites W2603228623 @default.
- W3159407029 cites W2728224506 @default.
- W3159407029 cites W2736116482 @default.
- W3159407029 cites W2737615274 @default.
- W3159407029 cites W2746689949 @default.
- W3159407029 cites W2750934411 @default.
- W3159407029 cites W2751108974 @default.
- W3159407029 cites W2752278864 @default.
- W3159407029 cites W2755871013 @default.
- W3159407029 cites W2768558813 @default.
- W3159407029 cites W2771704143 @default.
- W3159407029 cites W2788506577 @default.
- W3159407029 cites W2793761229 @default.
- W3159407029 cites W2802121422 @default.
- W3159407029 cites W2803704160 @default.
- W3159407029 cites W2807755107 @default.
- W3159407029 cites W2889468166 @default.
- W3159407029 cites W2894962840 @default.
- W3159407029 cites W2901528449 @default.
- W3159407029 cites W2903772126 @default.
- W3159407029 cites W2910974051 @default.
- W3159407029 cites W2929070111 @default.
- W3159407029 cites W2944957586 @default.
- W3159407029 cites W2970304030 @default.
- W3159407029 cites W2995138379 @default.
- W3159407029 cites W3034147932 @default.
- W3159407029 cites W3093402487 @default.
- W3159407029 cites W3135615202 @default.
- W3159407029 cites W4233070360 @default.
- W3159407029 cites W4251267227 @default.
- W3159407029 cites W4255655703 @default.
- W3159407029 cites W804512072 @default.
- W3159407029 doi "https://doi.org/10.3390/agronomy11050850" @default.
- W3159407029 hasPublicationYear "2021" @default.
- W3159407029 type Work @default.
- W3159407029 sameAs 3159407029 @default.
- W3159407029 citedByCount "23" @default.
- W3159407029 countsByYear W31594070292021 @default.
- W3159407029 countsByYear W31594070292022 @default.
- W3159407029 countsByYear W31594070292023 @default.
- W3159407029 crossrefType "journal-article" @default.